

#### **ROOM TO MOVE:**

# ACCOMMODATING WOODY DEBRIS IN STREAM CHANNELS AS FISH AND INVERTEBRATE HABITAT MORPHUM

Brendan J. Hicks<sup>1,2</sup>

Brendan.Hicks@Morphum.com

1 Morphum Environmental Ltd, Hamilton

2 University of Waikato, Hamilton



environmenta



#### Floods move wood in streams

A natural result of flood
Wood in the channel will move
Some wood is stable
What are the consequences of wood
in streams?

Do we need to remove wood from streams? Can we distinguish good wood from bad?







## 27 Jan 2023 flooding







#### Functions of the riparian zone as a source of leaf litter and woody debris

A stream and its banks Natural geomorphic units Riparian zone provides

- Shade
- Channel stability
- Leaf litter for energy
- Wood for structure
- Sedment retention









Surface



## The influence of wood on geomorphic processes in streams

Routing of water and sediment in channel

Bank protection

Aeration of water

Variation of water depth

Substrate for fish and invertebrates







## Banded kökopu

These fish live on the stream bed

Often associated with stream wood

Nocturnally active

Eat invertebrates – mostly larval insects















## Longfin eel

Migrate from the sea
Live for 50 years or more
in streams
Nocturnally active
Eat invertebrates







## Freshwater crayfish (kōura)

Hard-bodied crustaceans
Nocturnally active
Eat leaf litter and invertebrates
Breed in streams







#### Swanson Stream, West Auckland

Partly forested 23 km<sup>2</sup> catchment in West Auckland

Hit hard by 27 Jan 2023 flooding A lot of wood accumulated in and around the stream channel Created a challenge for Auckland

Council

Prospect of blocking the channel
Damage to bridges and streamside
property











### Woody debris on the floodplain

Wood lodged on the floodplain Photo 15 January 2024







#### Non-functional coarse woody debris

Woody debris suspended
above Swanson Stream
At high flows it could create
bed scour and channel
deepening
Otherwise of no benefit

to the stream ecosystem







## Functional coarse woody debris

Forms potential fish cover and bank protection

Typical cover for eels







## Functional fine woody debris

Fine woody debris

(<15 cm diameter)

Forms stable cover for fish
and invertebrates

Invertebrates are an important
food for fish

Have their own intrinsic
worth as biodiversity and
part of the ecosystem





Størmwater 2024

15–17 May | Tākina Wellington Te Whanganui-a-Tara

#### Functional pool-forming, complex woody debris

Potential habitat for fish and invertebrates

Protection from high water velocities
Protection from predation







## How do we know any of this?

A lot of experience catching fish – anecdotal

Rigorous experiments before-after study,
removal from East Cape streams
Brenda Baillie, 2011 U Waikato PhD
"The physical and biological function
of wood in New Zealand's forested
stream ecosystems"

Baillie et al. (2011)



#### Before and after wood removal

Stark difference in aquatic habitat

Gravel movement downstream

Shallower water – pool loss

Degradation of channel

The wood was holding and

storing channel substrate

A classic debris dam



Baillie et al. (2013) Ecol Freshw Fish 22: 553-566





#### After wood removal

Pools fell from 27 to 17%
Runs fell from 27 to 18%
Riffles increased from 50 to 65%



Baillie et al. (2013) Ecol Freshw Fish 22: 553-566





#### Invertebrates in debris dams cf. riffles

Riffles are typically considered the best habitat for invertebrates But woody debris dams are better!

Key: CF, collector-filterers – net-spinning caddis CG, collector-gatherers – mayfly P, predators – toebiter S, shredders - stonefly



Baillie et al. (2019) Mar Freshw Res 70: 734-744 Water





#### Fish and wood removal

C = control (wood remained)

T = treatment (no wood)

Pools with wood

(wooded pools) had

most fish

These were lost with

wood removal



Baillie et al. (2013) Ecol Freshw Fish 22: 553-566





#### **Conclusions and recommendations**

East Cape streams showed that woody debris in the stream channels was effectively holding the stream habitat together

Wood removal resulted in loss of pool and run habitat and a large increase in riffle habitat

The largest effect of wood removal was on banded kokopu and longfin eels

Invertebrate abundance and diversity also declined with wood removal

So wood can be important habitat and give the channel bed stability

When planning wood removal from streams, wholesale removal should be avoided

In Swanson Stream, the debris removal was undertaken

Aimed at reducing flood risk while being sympathetic to the ecological function of wood in the stream





## Acknowledgements

We acknowledge funding from

- Morphum Environmental Ltd
- Waikato Regional Council
- the University of Waikato

The Swanson Stream work was done as part of Auckland Council-funded debris removal projects P04020 and P04162.

Brenda Baillie's huge research effort in the East Cape for her PhD is a cornerstone of understanding the role of woody debris in NZ streams.

We thank the two reviewers provided by Stormwater 2024 for their insightful comments on the long paper





#### References

Baillie, B.R. (2011) The physical and biological function of wood in New Zealand's forested stream ecosystems. PhD thesis, University of Waikato, Hamilton.

Baillie, B.R. Hicks, B.J. van den Heuvel, M.R. Kimberley, M.O. and Hogg, I.D. (2013) The effects of wood on stream habitat and native fish assemblages in New Zealand. Ecology of Freshwater Fish 22: 553–566. doi: 10.1111/eff.12055.

Baillie B.R. Hicks B.J. Hogg I.D., van den Heuvel M.R. and MO Kimberley. (2019) Debris dams as habitat for aquatic invertebrates in forested headwater streams: a large-scale field experiment. Marine and Freshwater Research 70: 734–744. <a href="https://doi.org/10.1071/MF18216">https://doi.org/10.1071/MF18216</a>.

Hicks B., Vaughan K., Frederick K., Hall M., McCord J., Rossaak A. 2024. Room to move: accommodating woody debris in stream channels as fish and invertebrate habitat. Stormwater Conference, Wellington.





## Thank you! Questions? Patai?



