

BEST FOR AUCKLAND STORMWATER OUTCOMES FOR EASTERN BUSWAY

P. May

Proudly brought to you by Water New Zealand

INTRODUCTION

- PROJECT DESCRIPTION
- STORMWATER DESIGN PHILOSOPHY
- NETWORK DISCHARGE CONSENT
- BPO SELECTION
- DESIGN DEVELOPMENT
- OVERLAND FLOW PATHS AND FLOODING
- SUMMARY

PROJECT DESCRIPTION

Eastern Busway:

- Is an integrated, multi-modal transport system to support population and economic growth in southeast Auckland and to decarbonise transportation.
- will enable investment in intensification along the busway corridor.
- Is projected to accommodate 18,000 passengers per day by 2028 (4 x pre-Covid 19) and 24,000 passengers per day by 2048.
- Will provide 5 km of busway between Pakūranga and Botany fully separated from other traffic allowing reliable bus trips along with five new bus stations.
- Will also provide 12 km of separated walking and cycling routes
- Will connect travelers to Panmure station for train connections to Central Auckland.

23–25 May | Cordis, Tāmaki Makaurau Aucklanc

DESIGN PHILOSOPHY

- A 'maintenance-led' approach (MR) seeking to reduce maintenance and operational costs
- MR require BPO approach under the Network Discharge Consent framework for stormwater treatment and does not follow GD01 as the default position.
- A risk-based approach, providing treatment efficiencies that are proportional to the contaminant generating risk.
- The use of a BPO approach is balanced by the target of achieving an overall reduction in existing contaminant contributions from carriageway.
- Mana whenua is a project partner of the Eastern Busway Alliance
- Weekly technical discussions with Healthy Waters.
- Collaboration led to the opportunity for best-for-Auckland solutions
- The project corridor is highly constrained

NETWORK DISCHARGE CONSENT

Proudly brought to you by Water New Zealand

Størmwater 2023
Te Roopu Wai Āwhātanga
23-25 May | Cordis, Tāmaki Makaurau Auckland

Connection requirements

AT/NZTA/Railways transport projects

Størmwater 2023

Te Roopu Wai Āwhātanga

23–25 May | Cordis, Tāmaki Makaurau Auckland

AT/NZTA/Railways transport projects¹³

Connection requirements 14

Issue/receiving environment

Small projects – up to 1,000m⁻²

facilities and ferry termina

righ contaminant rating carpark 16

WATER QUALITY (Note: these apply in addition to general performance requirements above) Where the existing road corridor is constrained off-setting within the same catchment may form part of the mitigation approach.

All receiving environments	No requirements.	No requirements.
All receiving environments	No requirements.	No requirements.
		(

Treatment of new road area and any . Treatment of new/redeveloped area existing road area directed to same point by a water quality device designed in accordance with GD01/ TP 10 for the relevant contaminants.

(or all carpark area where it is >50% of the site) by a water quality device designed in accordance with GD01/ TP 10 for the relevant contaminants.

Treatment of equivalent area of high use road within same catchment by a water quality device designed in accordance with GD01/TP 10 for the relevant contaminants

· Treatment of equivalent area within same catchment by a water quality device designed in accordance with GD01/TP 10 for the relevant contaminants

- · An alternative level of mitigation determined through a SMP that:
- applies an Integrated Stormwater Management Approach (as per above);
- meets the NDC Objectives and Outcomes in Schedule 2; is the BPO for the given project.
- An alternative level of mitigation determined through a SMP that:
- applies an Integrated Stormwater Management Approach as per above); meets the NDC Objectives
- and Outcomes in Schedule 2;
- is the BPO for the given project.

BPO SELECTION

Options Assessed Against:

- Mana whenua
- Project Objectives
- Network Discharge Consent
- Sustainability
- Water Quality (Contaminant Load Modelling)
- Whole of Life Outcomes
- Constraints
- Safety in Design

Project-wide percent change in annual contaminant load predictions for treatment options assessed				
Scenario	TSS	Zinc	Copper	ТРН
No Treatment	10%	1%	1%	1%
Option 1: Raingardens & GPT	-34%	-24%	-26%	-30%
Option 2: Large Raingardens	-16%	-13%	-16%	-19%
Option 3: Wetlands	-19%	-8%	-13%	-7%
Option 4: GPT & StormFilters	-23%	-2%	-14%	-19%

Project-wide stormwater treatment option LLC in New Zealand dollars for 2023				
Scenario	Land Purchas	LLC	Total LLC	
Option 1: Raingardens & GPT	\$0	\$10,694,000	\$10,694,000	
Option 2: Large Raingardens	\$7,595,000	\$11,803,000	\$21,698,000	
Option 3: Wetlands	\$20,115,000	\$16,742,000	\$35,309,000	
Option 4: GPT & StormFilters	\$500,000	\$7,025,000	\$7,705,000	

EB2 PERCENT CHANGE IN ANNUAL CONTAMINANT LOAD FINAL DESIGN				
OUTFALLS	TSS	TOTAL ZINC	TOTAL COPPER	ТРН
OUTFALL P98086C	-49%	-56%	-56%	-56%
OUTFALL MCC 108673	-55%	-22%	-32%	-32%
OUTFALL MCC 108680	-66%	-44%	-49%	-55%
OUTFALL MCC 108699	-30%	-33%	-35%	-38%
OUTFALL MCC 108633	-3%	-1%	-1%	-1%
TOTAL EB2	-41%	-24%	-30%	-31%

EB3R PERCENT CHANGE IN ANNUAL CONTAMINANT LOAD FINAL DESIGN				
OUTFALLS	TSS	TOTAL ZINC	TOTAL COPPER	ТРН
OUTFALL MCC 108703	-75%	-76%	-79%	-81%
OUTFALL MCC 108707	6%	113%	94%	75%
OUTFALL MCC 108713	-100%	-100%	-100%	-100%
OUTFALL MCC 108718 & 108719	-19%	29%	19%	9%
OUTFALL MCC 108738	-78%	-67%	-70%	-73%
OUTFALL MCC 108748	-60%	-45%	-51%	-57%
OUTFALL MCC 108746 & 108749	-15%	4%	-3%	-7%
TOTAL EB3R	-48%	-28%	-34%	-39%

VORTECHS™ BY STORMWATER360

SIZED TO REMOVE 50% TSS ON A LONG-TERM AVERAGE

CASCADE SEPARATOR™ BY STORMWATER360

Størmwater 2023 Te Roopu Wai Āwhātanga

23–25 May |Cordis, Tāmaki Makaurau Aucklanc

DESIGN DEVELOPMENT

- Reference Design
- Reference Design Updated (Flood Mitigation Design)
- Reference Design Updated (MR Compliant Design)
- Preliminary Detail Design
- ACHE Betterment Scoping and Development
- Completed Detailed Design (incorporating Betterment)
- IFC/AFC

OVERLAND FLOW PATHS AND FLOODING

Proudly brought to you by Water New Zealand

3–25 May | Cordis, Tāmaki Makaurau Aucklan

EB2 EXISTING FLOOD EXTENTS

Størmwater 2023Te Roopu Wai Āwhātanga

23–25 May | Cordis, Tāmaki Makaurau Aucklanc

EB2 DESIGN FLOOD EXTENTS

Størmwater 2023
Te Roopu Wai Āwhātanga

23–25 May |Cordis, Tāmaki Makaurau Auckland

EB2 DESIGN 10-YEAR DEPTH DIFFERENCE

EB2 DESIGN 100-YEAR DEPTH DIFFERENCE

Størmwater 2023Te Roopu Wai Āwhātanga

23–25 May |Cordis, Tāmaki Makaurau Auckland

EB3R EXISTING FLOOD EXTENTS

Størmwater 2023Te Roopu Wai Āwhātanga

23–25 May |Cordis, Tāmaki Makaurau Aucklanc

EB3R DESIGN FLOOD EXTENTS

EB3R DESIGN 10-YEAR DEPTH DIFFERENCE

EB3R DESIGN 100-YEAR DEPTH DIFFERENCE

Størmwater 2023
Te Roopu Wai Āwhātanga

23–25 May Cordis, Tāmaki Makaurau Auckland

SUMMARY

Through collaboration with mana whenua and Auckland Council Healthy Waters, EBA is achieving:

- Lower contaminants being discharged to the outfalls than in the existing case
- A dry busway in a 10-year event and services are not disrupted in a 100-year event
- Flooding during 10 and 100-year events are significantly less through the project extents and adjacent areas
- Low maintenance stormwater networks and treatment systems
- Incorporation of Auckland Council Healthy Waters Betterment into Project works
- Best for Auckland Solutions

Thank you! Questions? Patai?

