

DHI Water & Environment and Urban Utilities

ASSESSING THE IMPACT OF WET WEATHER OVERFLOWS ON WATER RECREATION USING EFFECTS-BASED APPROACH

Kalyan Chakravarthy

Proudly brought to you by Water New Zealand

Acknowledgments

- Cameron Jackson and Jodie Parison
- Meven Huiban and Caroline Lai
- Hema Kumar and Ben Martyn,
- Sam Johnson and Bogdan Kurbetyev

Agenda

- Context
- Effects-Based Assessment
- Impact on Water Recreation
- Digital Twin
- Discussion

Context

- Urban Utilities delivers drinking water, recycled water, and wastewater services in South-East Queensland, Australia.
- Urban Utilities collects, transports, and treats about 126,000ML of wastewater annually.
- Urban Utilities are embarking on environmental leadership to protect and enhance ecosystem health.

Context

- Accelerating pressures on water utilities due to population growth, ageing infrastructure, stricter compliance standards, and climate change impacts.
- Utilities lack a holistic understanding of their impacts on the environment due to cumulative effects.
- Utilities are facing increasing costs to investigate multiple investment planning scenarios, resulting in limited planning options.
- Traditional reporting approaches fall short of effectively communicating the impacts of cumulative effects on the receiving environment to justify required investments for infrastructure upgrades.

Wet Weather Overflows

An **overflow** which occurs from any part of the **wastewater network** during **wet weather flow**, due to stormwater and groundwater (directly or indirectly) entering the network and resulting from a **lack of conveyance capacity** within the network.

Wet Weather Overflows – Public Health

- Untreated wastewater contains elevated levels of contaminants, pathogens, viruses, bacteria, and protozoa that can cause serious diseases and health problems
- Risk for human health through physical contact leads to gastrointestinal and respiratory infections, skin, eyes, and ear infections, and irritation.
- Wastewater can also contaminate filter feeders ingestion risk to humans.

WWOs - Management Approaches

- Asset: A systematic approach to operate and maintain wastewater infrastructure to meet the performance requirements
- Containment: Uses a containment measure to manage system performance
- Outcomes: Sets measurable goals or outcomes aligned with a strategic vision at a macro or micro level
- Risk-based: Assesses the likelihood and potential consequences of WWO to identify the potential impact on the receiving environment principles
- **Effects-based**: A data-driven decision-making approach for the management of activities and their actual impact on the receiving environment principles

Model Schematics for Effects-Based Implementation

Proudly brought to you by Water New Zealand

Wet Weather Overflows (WWO) - Annual

Items	WWO (% of total catchment inputs)
Time (%)	0.5
Discharge (%)	0.25
Bacteria Load (%)	11.6

Monthly Impact on Recreational Hours

Wet Weather Overflows (WWO) - ARI

48-hr duration	WWO (% of total catchment inputs)		
Items	6-month ARI	2-year ARI	
Time (%)	5	11	
Discharge (%)	0.1	0.7	
Bacteria Load (%)	6	28	

6-month ARI Impact on Recreational Hours

2-year ARI Impact on Recreational Hours

Results – Hours Available for Water Recreation

Recreational Hours (%)	6-month ARI	2-year ARI
Primary	87	69
Secondary	97	95

Results – Average Breach Duration

Breach Duration (hours)	6-month ARI	2-year ARI
Primary	50	86
Secondary	20	32

Environmental Footprint Scenario Manager Wet Weather Management

Receiving Environment Digital Twin (REDIT)

Receiving Environment Digital Twin (REDIT)

Sewage Outfall Planning Scenario Manager **Environmental Footprint** Receiving Environment **Digital Twin** Recreational Water Quality **Forecast** Wet Weather Management Scenario Manager

Traditional asset Integrated asset planning planning **Overall impact** Performance of on the receiving individual assets environment Rule based **Evidence based** contribution compliance **Individual asset** Holistic planning CAPEX approach

Proudly brought to you by Water New Zealand

15–17 May | Tākina Wellington Te Whanganui-a-Tara

Receiving Environment Digital Twin (REDiT)

- Simulation of any period (dry weather or storm events) in the year for up to 9 days
- Estimating recreational hours at recreational sites
- Visualisation of E.cocci movement tracks from the sources of contamination during the 9-day period
- Compute the proportion of contribution from the sources of E.cocci discharge
- Automated post-processing of results summary through maps, time series, and statistics.
- Spatial comparison of scenario results
- Visualisation of simulation results (spatial and time series)

Receiving Environment Digital Twin (REDiT)

REDIT platform will drive partnership investments to improve:

- Aquatic ecosystem health (water quality);
- Public health (water quality & amenity);
- The scale of ecosystem services and liveability outcomes (water recreation, economic benefits, fishing, tourism and culture)
- Stakeholder understanding and acceptance of recommended investment options

Large CAPEX savings / deferment

Collaboration with regulators

Effects based Planning

Holistic view of whole environment

Framework for environmental offsets

Optimize planning and operations

Quantify connectivity

15-17 May | Tākina Wellington Te Whanganui-a-Tara

Summary

- The Brisbane River Estuary experiences **cumulative stress** regarding bacteria loading primarily from catchment inflows and, to a much lesser extent, from sewerage assets (STPs and WWOs).
- WWOs occur briefly, discharge an insignificant volume, and contribute less than 30% of total catchment bacterial loads.
- With catchment loads dominating bacterial loads, an EBA using REDIT is used to develop cost-effective WWO management strategies for community benefits.
- In the future, Urban Utilities plans to enhance REDIT as an operational model to support the transition towards more proactive management of its infrastructure.
- Real-time operational changes can mitigate WWOs, leading to more effective protection of water recreation values.

Thank you!
Questions? Patai?
cmka@dhigroup.com

