

University of Canterbury

Performance Assessment of Storminator[™] Barrel: A Dissolved Metal Treatment System

Frances Charters, Connor Moss with Lexi Clarkson, Madison Millar, Tom Cochrane and Aisling O'Sullivan

Dissolved Metals in Roof Runoff

Introduction

Conclusion

Results

Dissolved Metals in Roof Runoff

Proudly brought to you by Water New Zealand

Størmwater 2024

Introduction

Conclusions

StorminatorTM Barrel Performance

Proudly brought to you by Water New Zealand

Introduction

ogy

Conclusion

StorminatorTM Barrel design criteria

- Effective at dissolved metal removal
- Adequate hydraulics to take full downpipe flow with minimal bypass
- Use of waste materials
- Retrofittable on existing downpipes
- Small footprint, lightweight, low maintenance

Proudly brought to you by Water New Zealand

Introduction

Research Questions

- What is the **performance variation** in the Storminator Barrel across multiple storm events?
- How do the **rainfall and influent quality characteristics** affect the performance of the Storminator Barrel?
- How can we model barrel performance using a **combination of hydraulic and metals removal performance data**?

Field experiments to characterise and compare:

- Untreated vs treated water quality; dissolved metals focus
- Different roof materials
- Different media blends
- Several rain events of different dynamics
- Flow capacity of system

oduction

Methodology

Conclusion

Aim to characterise and compare:

- Untreated vs treated water quality; dissolved metals focus
- Different roof materials
- Different media blends
- Several rain events of different dynamics
- Flow capacity of system

ntroduction

Methodology

Re Re

Conclusion

Water NEW ZEALAND The New Zealand Water & Wastes Association Waiora Actearca

E8/E9 Lecture Theatre Old oxidised copper 3

55

High Voltage Laboratory Near-new painted galvanised

37

35

29

"Oad

39

45

43

11

6

4

Ore

5

Forestry Building Poor condition ZincAlume

Field experiments to characterise and compare:

- Untreated vs treated water quality; dissolved metals focus
- Different roof materials
- Different media blends
- Several rain events of different dynamics
- Flow capacity of system

Parameters	
Rain events sampled	17 events (April 2023 to February 2024)
Antecedent dry days	0.1 - 17 days
Average event intensity	0.2 – 6.4 mm/hr
Peak 5-min intensity	Up to 50 mm/hr
Sample types	Untreated and treated First flush and second stage
Water quality analytes	Dissolved copper Dissolved zinc Turbidity Alkalinity, pH

luction

Methodology

R

Conclusion

Aim to characterise and compare:

- Untreated vs treated water quality; dissolved metals focus
- Different roof materials
- Different media blends
- Several rain events of different dynamics
- Flow capacity of system

Proudly brought to you by Water New Zealand

Methodology

Developing a model for estimating hydraulic throughput and metal removal performance.

- First stage 100% treatment rate.
- Second Stage A decline in treatment rate with some overflow.
- Third stage The total flow of water in exceeds the maximum flow rate (overflow).

Quantifying

- Hydraulic storage capacity.
- Peak treatment rate (170 l/min). •
- Maximum flow rate (261 l/min). •

Størmwater 2023 Te Roopu Wai Áwhātanga 23–25 May | Cordis, Tāmaki Makaurau Auckland

Methodology

Apply model:

- For a 5 minute time period over a full year (2021) for Auckland, Wellington and Christchurch.
- Used Python to estimate Storminator performance for a given roof size.

Storage Volume.

$$\frac{dV}{dt} = Q_{inflow} - Q_{treated} - Q_{overflow}$$

Treated flow.

 $Q_{treated} = \min(Q_{\max treatment}, Q_{potential treted})$

Overflow.

$$Q_{max} = (0, V_{current\ storage} - V_{max\ storage})$$

ntroduction

Methodology

Conclusion

Størmwater 2023 Te Roopu Wai Āwhātanga 23-25 May | Cordis, Tāmaki Makaurau Auckland

Metals Removal Performance

Proudly brought to you by Water New Zealand

15–17 May | Tākina Wellington Te Whanganui-a-Tara

roduction M

lodology

Results

Conclusion

Metals Removal Performance

Turbidity and Alkalinity Change

Comparison of Barrels 1-3 (Cu) vs Barrels 4-6 (Zn):

- Installed nine months apart
- Alkalinity in newer Barrels reduced to older Barrels concentrations within 5 rain events
- Turbidity in newer Barrels reduced to <20 NTU within 5 events, comparable with influent turbidity
- Turbidity in older Barrels was <1.5 NTU: physical filtering

Flow Capacity and Modelling

Storminator performance by flow

• Using the model and real-world testing data.

Results

- Average treatment rate Zn 95%, Cu 88% with no bypass (170 L/min)
- Minimum treatment rate Zn 88%, Cu 67% with no bypass
- Minimum treatment rate Zn 62%, Cu 57% at 261
 L/min (extreme weather event, with bypass)

Proudly brought to you by Water New Zealand

Størmwater 2024 15–17 May | Takina Wellington Te Whanganui-a-Tara

Introduction

n Meth

Flow Capacity and Modelling

2021 Modelled total and treated volume

- Models using NIWA data showed the efficacy for different roof sizes in different cities.
- Allowed a maximum suggested roof size for the system based on local climates.

Results

Størmwater 2023 Te Roopu Wai Áwhātanga 23–25 May | Cordis, Tāmaki Makaurau Auckland

Introduction

n Meth

gy

Conclusions

Flow Capacity and Modelling

2021 Modelled total load removed

- Modelled total load removed from
 Stormwater for different roof sizes in
 different cities, using 2021 NIWA data.
- Using a representative stormwater: Zn 1,500 ug/L and Cu 2,500 ug/L

Water NEW ZEALAND The New Zealand Water & Wastes Association Waiora Actearoa Proudly brought to you by Water New Zealand

Størmwater 2024

Introduction

n Meth

ogy

Results

Conclus

Key Findings

- ✓ The Storminator[™] Barrel consistently removes >88% of dissolved zinc from zinc-based roofs, for concentrations up to 3,000 ug/L
- ✓ Consistently removes >67% dissolved copper from copper-based roofs, for concentrations up to 9,000 ug/L
- $\checkmark\,$ The system can handle flows up 170 L/min without any bypass
- $\checkmark\,$ For a 250 m² roof in Wellington and Auckland, removal of 300-500 g Zn/year

Implications and Next Steps

- Uncertainty in influent quantity and quality, and in treatment performance
 - > Can be reduced by having a large capacity system
 - > Need to aim for minimal bypass
- The treated zinc concentrations average only 2x the instream water quality limit
- Treated copper concentrations can still exceed instream limits by >100x
 - > For copper, need policies to avoid copper use
 - > For zinc, need source reduction tools, not just end-of pipe options
 - > What is needed to enable this?

John Dyksma – UC Facilities Management Fabio Cabral Silveira – UC Environmental Technician Jacob Northage – UC Research Assistant

Acknowledgements:

Thank you! Questions? Patai?

Want to know more? Contact us via www.storminator.co.nz

Størmwater 2024