

Data, Modelling and Resilience

Development of the National Stormwater Modelling Guide

Michael Arthur – Metis Consultants

Overview

- Acknowledgements
- Summary of the guide
- Workshops An effective tool for testing content
- and gaining buy-in
- The importance of model planning
- Model types and links with purpose
- Accessibility guide or specification?
- Next steps

Acknowledgements

Delivery Team:

- Rathika Jebamony Modelling Lead Awa Environmental
- Carl Johnson Director Submergent

WaterNZ:

- Nicci Wood Project Manager
- Modelling SIG members (past and current)
- Stormwater SIG members

Advisory Group:

- Alistair Osbourne Wellington Water
- Cheryl Bai Auckland Council
- Emily Lane NIWA
- Mazza Aziz Whangarei District Council
- Nadia Nitsche Wellington Water
- Sue-Ellen Fenelon Ministry for the Environment
- Suzana Shipton DHI
- Thomas Nikkel WSP
- Pranil Wadan Woods
- Victor Su Tauranga City Council
- Tracey Myers Tauranga City Council

Acknowledgements

You! (if you attended one of these events.....)

- Industry Survey July / August 2020
- Water New Zealand National Conference Workshop November 2020
- Water New Zealand Modelling Symposium Workshop June 2021
- Water New Zealand Modelling Symposium Workshop March 2023
- Water New Zealand Online Workshop April 2023
- Industry Survey April / May 2023
- Water New Zealand Stormwater Conference Workshop May 2023
- Interviews with council staff and consultants in the industry April to May 2023
- Water New Zealand Conference and Expo Workshop October 2023
- Water New Zealand Online Workshop October 2023

Summary of guide

Summary of guide

Introduction: Guideline purpose and guiding principles

Plan – Project: Define model purpose, engage with stakeholders, review background information and plan quality assurance

Plan – Model: Define success criteria, identify phenomena, confirm approach & methodology, select software, set model management practices and commence data collection

Build - Prepare hydrological inputs, build hydraulic model, set boundary conditions, complete quality assurance, define limitations & assumptions, assess model confidence and prepare reporting

Use - Test and compare current and future scenarios by varying model boundary conditions, hydrology and hydraulics (including blockage assessment)

Summary of Guide

Maintain: Best practice approaches for archiving and updating model assets

Share: Managing intellectual property rights, metadata and data formats

Appendices:

Metadata Standard: Models and result files

Model Review Checklist: Basic checklist for

reviewing models

Workshops – An effective tool for testing content and gaining buy-in

Early in project:

- What is needed in the guide?
- What is available now?
- What works well / not so well?

Middle of project:

- Have we missed anything important?
- What are the key gaps in current guidance?
- Does the draft structure look OK?
- What format should the guide be delivered in?

Near end of project:

- Do these key concepts / content make sense?
- What are the barriers to achieving these things?

The importance of model planning...

Proudly brought to you by Water New Zealand

15-17 May | Tākina Wellington Te Whanganui-a-Tara

Proudly brought to you by Water New Zealand

15-17 May | Tākina Wellington Te Whanganui-a-Tara

NEW ZEALAND

The New Zealand Water & Wastes Association Waiora Aotearoa

Proudly brought to you by Water New Zealand

15-17 May | Tākina Wellington Te Whanganui-a-Tara

Model types and links with purpose

Component

Pipe network

2D surface

Open channels

Hydrological parameters

Upstream catchments

Term	Description				
Excluded	Features are not represented explicitly.				
Simple	Simple calculations or static analysis.				
Data driven	Non-physics-based models.				
Hydrological	Lumped hydrological model.				
1D hydraulics	Free surface, St <u>Venant</u> hydrodynamic model.				
2D hydraulics	Shallow-water-wave hydrodynamic model.				
3D hydraulics	Navier-Stokes hydrodynamic model.				

Does the selected model type have a structure that will meet the strategic goals?

Define
methodology to
be used for key
model
components

Define level of detail to be applied to represent key model components

Term	Resolution	Description			
	Low	Parameters estimated for entire domain.			
Averaged	High	Parameters estimated at detailed level and averaged.			
Grouped	Low	Parameters estimated for subdomains.			
	High	Parameters estimated at detailed level and averaged for each subdomain.			
Discrete	Low	Coarse resolution with respect to physical features.			
	Medium	Resolution sufficient to resolve effects of features.			
	High	At the resolution of the real-world features of interest.			

Proudly brought to you by Water New Zealand

Størmwater 2024

15–17 May | Tākina Wellington Te Whanganui-a-Tara

Model types and links with purpose

Term	Description					
Unconsidered	No effort is expended in representing features. Interpolated or default values are used.					
Conceptual	No information is available so estimates are used, design requirements may be known.					
Simple	Basic representation of features of interest, requirements are well-defined.					
Detailed	Finely-resolved data for design is available but does not capture full detail of an as-built survey.					
Detailed / mature	Mixture of as-built survey and designed geometry used in estimating parameters/geometry/behaviour.					
Mature	Model parameters / geometry / behaviour is based on field survey (topographical, LiDAR, remote sensing/aerial photos, etc.).					

Assess reliability

Is the quality of information available sufficient to meet the strategic goals?

Assess the level of rigour applied to estimating model parameters

Assess data maturity of input datasets

Term Description					
Theoretical	Based solely on intuition of modeller.				
Literature Published methods or parameters					
Verified	Indirect corroborating evidence or data.				
Validated	Sparse direct evidence based on historic event.				
Calibrated	Comprehensive direct evidence based on historic events.				

Model type	Details	Examples	Specific application	Model Component (Table 3-12)	Methodology (Table 3-13)	Level of detail (Table 3-14)	Rigour (Table 3- 15)	Data maturity (Table 3-16)
Dynamic/simple	Models built using comprehensive	2D domain model with	Evacuation planning.	Flood plain	2D hydraulics	Distributed, low-resolution	Theoretical	Mature
	datasets, such as LiDAR, with coarse	direct rainfall, excluding	Lifeline planning.	Large open channels	2D hydraulics	Averaged, low-resolution	Literature	Unconsidered
	assumptions used in the representation of	hydrological losses or		Small open channels	2D hydraulics	Averaged, low-resolution	Theoretical	Unconsidered
	hydrologic or hydraulic phenomena. To	pipe network. No editing		Upstream catchments	Hydrological	Lumped, low-resolution	Verified	Mature
	be used for developing approximate flood	of DEM to represent		Flood plain hydrology	Excluded	NA	NA	NA
	extents with some distinction between	channel conveyance.						
	shallow and deep flooding for used in							
	broadly identifying flood risks and							
	impacts.	2D domain model with	Strategic planning.	Flood plain	2D hydraulics	Distributed, low-resolution	Theoretical	Mature
		direct rainfall and	Programme	Large open channels	2D hydraulics	Lumped, low-resolution	Literature	Simple
		hydrological losses, but	prioritisation.	Small open channels	2D hydraulics	Lumped, low-resolution	Theoretical	Unconsidered
		no pipe network. DEM		Upstream catchments	Hydrological	Lumped, low-resolution	Verified	Mature
		modified at significant		Flood plain hydrology	Hydrological	Lumped, low-resolution	Literature	Unconsidered
		structures on large open						
		channels (culverts,						
		bridges, etc.) to ensure						
		flow continuity, if not						
		accurate afflux.						
		2D domain model with	Spatial planning.	Flood plain	2D hydraulics	Distributed-medium-resolution	Literature	Mature
		direct rainfall and	District Plan	Large open channels	1D hydraulics	Lumped, high-resolution	Literature	Mature
		hydrological losses, but	development.	Small open channels	2D hydraulics	Lumped, low-resolution	Theoretical	Conceptual
		no pipe network. Detail is	Plan changes.	Pipe network	1D hydraulics	Distributed, low-resolution	Theoretical	Detailed
		added at significant	Long Term Plan	Upstream catchments	Hydrological	Lumped, low-resolution	Validated	Mature
		structures on large open	development.	Flood plain hydrology	Hydrological	Distributed, low-resolution	Literature	Detailed /
		channels to determine	Multiple lot stormwater					mature
		accurate afflux. Soakage	design with known					
		losses are incorporated	existing risk (to site or					
		into infiltration loss.	downstream).					

Model types and links with purpose

Examples	Specific application	Model Component (Table 3-12)	Methodology (Table 3-13)	Level of detail (Table 3-14)	Rigour (Table 3- 15)	Data maturity (Table 3-16)
2D domain model with	Evacuation planning.	Flood plain	2D hydraulics	Distributed, low-resolution	Theoretical	Mature
direct rainfall, excluding	Lifeline planning.	Large open channels	2D hydraulics	Averaged, low-resolution	Literature	Unconsidered
hydrological losses or		Small open channels	2D hydraulics	Averaged, low-resolution	Theoretical	Unconsidered
pipe network. No editing		Upstream catchments	Hydrological	Lumped, low-resolution	Verified	Mature
of DEM to represent		Flood plain hydrology	Excluded	NA	NA	NA
channel conveyance.						

Accessibility - Guide or Specification?

Level of detail

- Detailed enough to be useful to expert & non-expert audiences....
- But not so detailed it becomes difficult to apply at a local scale....

Format

- PDF
- Website
- Both?!

Keeping it relevant

- Ease of update
- Enabling innovation

Next Steps

In scope:

Publish – Any day now!

Out of scope:

- Update & maintain guide WaterNZ with support of SIGs?
- National rainfall / runoff guidance
- Address issues around inconsistent language and poor understanding of common technical terms

Next Steps

Out of scope:

- Determine the need for developing national water quality modelling guidance
- Develop a framework for training and recognising professionals
- Definition and interpretation of flood hazard based

Thank you! Questions? Patai?

