

Modelling Symposium

Smart use of model outputs (digitization, GIS)

Presented by Dan Johnson and Jeanette Tucker

Objective

DUNEDIN kaunihera a-rohe o OITY COUNCIL Otepoti

- To produce a concept design for 3 waters network renewals considering a range of inputs to maintain levels of service and achieve strategic outcomes for DCC.
- Work closely and collaboratively with DCC and ECI McConnell Dowell (ECI) & Citycare (O&M), sharing and adopting lessons from the wider team including other panel consultants.
- Enabled collaboration across WSP's national team.

Pinehill, Dunedin

DUNEDIN kaunihera a-rohe o CITY COUNCIL **Ötepoti**

- Three waters renewals (WS, WW and SW)
- Approximately 47km of wastewater, stormwater, and water supply pipelines
- 1,140 predominately residential properties

Modelling Symposium 2024

water NEW ZEALAND

Water supply pipe material

Cast iron (55%), asbestos cement (11%), PE (11%)

Pipes installation range: 1929 to 2022

Approximately 36% of the piped network aged >80 year

- Asbestos Cement (AC)
- Copper (CU)

- Concrete lined steel (CLS)

Polyvinyl chloride (uPVC) Steel (ST)

Renewal of 3 Water pipelines based on:

Age >80 years but also based on pipe material expected life (AC pipe consider >60 years)	Condition/material Assets in poor condition Remove Asbestos Cement in private land	Capacity (Current & 50 Year) Upgrades to prevent surcharges (WW) Fire supply and residential water supply (WS)
Ļ	Ļ	Ļ
GIS, PiPyR and limited i	nput from CCTV footage	GIS and modelling
		Ļ
Replaceme Early ECI (McConnell I	Renewal of assets Relocate assets out of private propent nt of assets using trenched methods Dowell (ECI) & Citycare (O&M) engage	erty where possible gement for constructability

Hydraulic Modelling -

Hydraulic performance grade

- System performance assessment for Planning horizons: 2018 and 2073 (50-year)
- Define the performance criteria
- Simplistic 1 to 5 scores
- Sensitivity testing
- Linking the modelling outputs to GIS

/2020 00:00:00 From Node ID	To Node ID	Diameter (mm)	Length (m)	Max Headloss per Unit Distance (m/km)	Max Headloss (m)	Maximum High Pressure (m)	Maximum Pressure Criticality	Minimum Low Pressure (m)	Max Flow (l/s)	Min Flow (l/s)	Max Velocity (m/s)	Min Velocity (m/s)
WSConnector93880	WSMeter0007X	256.0	0.66	90.66	0.06	78.76	0.00	71.98	300.97	68.92	68.92 5.85	
WSMeter0007Y	WSConnector93879	256.0	0.31	90.66	0.03	76.15	0.00	67.33	300.97	68.92	5.85	1.34
WSConnector5016	WSConnector4849	96.5	1.50	26.74	0.04	84.03	0.00	69.88	10.43	9.32	1.43	1.27
WSConnector4795	WSConnector4796	96.5	1.07	26.74	0.03	66.02	0.00	56.30	10.43	9.32	1.43	1.27
WSConnector94480	WSConnector94479	260.4	6.35	15.46	0.10	3.14	0.00	0.54	86.10	67.47	1.62	1.27
WSConnector10890	WSConnector10890	169.9	17.33	133.33	2.31	2.93	0.00	0.29	125.54	-106.26	5.54	1.26
WSConnector4849	WsValve3567FR	96.5	5.75	22.59	0.13	84.03	0.00	69.43	9.57	9.17	1.31	1.25
WsValve3567TO	WSConnector4893	96.5	86.45	22.07	1.91	83.51	0.00	63.64	9.45	9.15	1.29	1.25
WSConnector4893	WsHydrant1366	96.5	36.84	21.17	0.78	77.83	0.00	61.63	9.25	9.11	1.27	1.24
WsHydrant1366	WSConnector4898	96.5	55.86	20.68	1.16	75.84	0.00	58.75	9.14	9.08	1.25	1.24
WSConnector70866	WsValve30654FR	200.0	12.68	11.30	0.14	82.94	0.00	62.16	47.36	38.86	1.51	1.24
WSConnector10541	WSEndCap32065	20.0	31.14	2854.25	88.88	78.29	0.00	-10.00	2.02	0.39	6.42	1.23
WSConnector11137	WsValve44055TO	315.8	0.41	7.44	0.00	81.78	0.00	70.35	141.21	95.46	1.80	1.22
WSConnector65428	WSConnector65426	315.8	13.02	7.44	0.10	81.72	0.00	70.06	141.21	95.46	1.80	1.22
WSConnector70868	WSConnector70867	202.2	2.62	8.72	0.02	82.78	0.00	62.09	47.36	38.86	1.47	1.21
WsValv WsValv WsPum WSCor	sset ID	N Hea	Max adlos	s	Max Velocity	y	High Pressur	e	Low Pressur	e	Pressure Variance	
WsValv WSCor 28	86148		2		1		5		1		2	1.17 1.17 1.17 1.17
		200.0	2.52	7 1 2	0.02	3 40	0.00	0.87	37.36	36.63	1.19	1.17
WSConnector94472	WSConnector94471	200.0	2.33	7.15	0.02	5.40						
WSConnector94472 WSConnector94471	WSConnector94471 WsValve37176FR	200.0	2.33	7.13	0.02	.35	0.00	0.78	37.36	36.63	1.19	1.17
WSConnector94472 WSConnector94471 WsValve37176TO	WSConnector94471 WsValve37176FR WSConnector94470	200.0 200.0 200.0	2.32	7.13 7.13 7.13	0.02	.35	0.00	0.78 0.77	37.36 37.36	36.63 36.63	1.19 1.19	1.17 1.17

Hydraulic Assessment	Weightings (%)
Maximum Headloss	30
Maximum Velocity	30
High Pressure	10
Low Pressure	20
Pressure Variance	10
Total	100

Fire flow assessment

- Council adopted FW2 network wide classification (CoP)
- > To apply score the available fire flow, we applied:
 - Pass = 1
 - ≻ Fail = 5
- Marginal difference between growth scenarios
- Hydrant available fire flow GIS layer = Support FENZ

1 of 3) Fire Flow Assessment: WFH000	►
Hydrant ID	WFH00067
2018 Hydrant Testing Result	Failed
2018 Residual Pressure at Minimum Fire Flow (m)	17.53
2018 Available Fire Flow (I/s)	23.02
2073 Hydrant Testing Result	Failed
2073 Residual Pressure at Minimum Fire Flow (m)	16.52
2073 Available Fire Flow (I/s)	22.36
Zoom to	

Operation and maintenance - **Operational performance grade**

- Repairs identified and overlaid with work orders (2019-23)
- No. of breaks (burst frequency) = operational performance grade (1, 3, 5)
- Cross referenced against condition grade

Prioritisation

- > Hydraulic performance grade (1-5)
- Fire flow grade (Pass / Fail)
- Operational performance grade assets reaching the end of their asset life, pipes > 6 breaks
- Workshop with Council to agree weighting
 - ➢ Hydraulic − 20%
 - ➢ Fire flow − 40%
 - ➢ Operational − 40%

Renewals approach

- Growth minimal impact
- Hydraulic performance grade (1-5)- Generally good (peak residential demand)
- Firefighting grade (Pass- Fail 25L/s)- Several failed hydrants mainly Catchment B and C.
- Aging infrastructure/high burst frequency
- Design upgrades modelled

Wastewater modelling

- InfoWorks ICM model used to assess capacity of the existing network
- DCC Work Orders (sewer overflows, blockages) were georeferenced and used to validate model outputs
- Network capacity considered in evaluating renewal options, identifying where pipes require upsize or where rehabilitation methodologies that may decrease capacity (ex. Liners) should be avoided
- Model used to develop renewal alignments.

Criticality and condition assessment

GIS based Pipeline Priority and Renewals (PiPyR) tool uses multicriteria analysis (MCA)

Condition grade : aged-based condition assessment using pipe behaviour data for the age of materials

Criticality grade: Pipe diameter, pipe type, high-level renewal costs and location, (i.e., proximity to CBD, waterways, and other key infrastructure)

Priority = Condition X Criticality

Priority 1 and 2 assets – considered for renewal for the project

Prioritisation Description	Prioritisation Grade	Score range*
Very High	1	16-25
High	2	10-15
Medium	3	6-9
Low	4	3-5
Very Low	5	1-2

PiPyR- GIS dashboard

Asset data, site photos, and survey

Concept design and next steps

- Visual tool for all to display data and information
- Integrated both the PiPyR and modelling performance grades
- Operations workshop to refine process
- ECI with the contractor (McConnell Dowell) and DCC's O&M contractor (CityCare) through this platform and workshops
- Proposed pipe condition assessment (PCA) programme to improve confidence in the 'age-based inferred' to support the renewals prioritisation

Concept design and next steps, cont'd

- > Optimisation of pressure zones / remove dead ends
- CI pipelines to progress to detailed design
- Hydrants testing to validate model outputs
- Renewal of approx. 8 km of water mains

Future development

- Apply to other catchments/zones, network-wide
- Applying other modelling related outputs: water age/water quality, criticality link analysis
- Exploring how we can integrate WSP's machine learning tool outputs:
 - likely locations of leaks within the network
 - future pipe failures and the cost of replacement against future repairs
- Customer focused understand the level of disruption
- Operational validation operators, right size data

Project benefits

Layering of information

Spatially accurate

Effective communication / visual tool 45574

Easier to integrate with other projects

Consistent / defendable approach

Thank you! Questions? Patai?

