ANTIMICROBIAL RESISTANCE IN AOTEAROA: OCCURRENCE AND TRANSPORT THROUGH WASTEWATER

Louise Weaver¹, Isabelle Pattis¹, William Taylor¹, Erin McGill¹, Christina Straub¹, Angela Cornelius¹, Pierre-Yvres Dupont¹, Panan Sitthirit, Bronwyn Humphries, Lee Liaw², Kristin Dyet¹

¹ Institute of Environmental Science & Research Ltd (ESR)

²Christchurch City Council

What is it?

Water & Wastes Association Waiora Aotearoa

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Täkina, Te Whanganui-a-Tara Wellington

Why do we care?

Emerging Contaminants

Emerging Contaminants 7 (2021) 160-171

Contents lists available at ScienceDirect

journal homepage: http://www.keaipublishing.com/en/journals/ emerging-contaminants/

The role of emerging organic contaminants in the development of antimicrobial resistance

Izzie Alderton ^{a, *}, Barry R. Palmer ^b, Jack A. Heinemann ^c, Isabelle Pattis ^a, Louise Weaver ^a, Maria J. Gutiérrez-Ginés ^a, Jacqui Horswell ^{b, 1}, Louis A. Tremblay ^{d, e}

> Figure 1. Schematic of potential transmission pathways of AMR bacteria between human, environmental and animal reservoirs.

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington

How does it happen?

Antibiotic Resistance Awareness

Why wastewater?

Source: Healthy environment is key for antibiotics to work | UNEP | 2020

Methods

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington

Results – Microbial communities

Ten most abundant microbial classes of AMR genes present across the WWTP.

Results – AMR gene families

amr gene family AAC(6') ABC-F ATP-binding cassette ribosomal protection protein antibiotic-resistant isoleucyl-tRNA synthetase (ileS) Erm 23S ribosomal RNA methyltransferase General Bacterial Porin with reduced permeability to beta-lactams intrinsic colistin resistant phosphoethanolamine transferase macrolide phosphotransferase (MPH) major facilitator superfamily (MFS) antibiotic efflux pump MOX beta-lactamase Other OXA beta-lactamase resistance-nodulation-cell division (RND) antibiotic efflux pump rifamycin-resistant beta-subunit of RNA polymerase (rpoB) small multidrug resistance (SMR) antibiotic efflux pump sulfonamide resistant sul tetracycline-resistant ribosomal protection protein

Results – Resistant bacteria

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganuia-Tara Wellington

Conclusions

A reduction in AMR through the WWTP was observed.

- AMR resistant bacteria and genes were detected in the polishing pond and pond sediment.
- There is a risk of environmental dissemination and transmission

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Täkina, Te Whanganui-a-Tara Wellington

Many thanks for listening!

Thanks to MBIE Strategic Science Investment Fund (SSIF) administered through ESR for funding this research.

If you have any questions: please email Louise.Weaver@esr.cri.nz Isabelle.Pattis@esr.cri.nz

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington