

Reuben Bouman – co-authored by John Crawford and Claire Scrimgeour

Pond Upgrade or Plant Rebuild The Pros and Cons

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Täkina, Te Whanganui-a-Tara Wellington

Contents Pond Upgrade Options 2 Area, Capacity, Resilience Operations, Energy, Carbon, Odour, Sludge 3

4 Culture and Cost

Pond or Plant? - That is the Question

• Is there a 'One Size Fits All' answer?

The Challenges

- Pristine receiving environment
- Buildout
- Growth

- Higher Levels of Service
- Reverse sensitivity

Pond Upgrade Options

- 16 Options assessed in Hugh Ratsey 2016 paper Upgrading Waste Stailisation Ponds: Reviewing the Options
- Further developed in the 2017 Water NZ guideline
- New Options
 - MBBR (Moving Bed Biofilm Reactor)
 In return stream arrangement
 - MABR (Membrane Aerated Bio-Reactor)

WASTE STABILISATION PONDS: DESIGN AND OPERATION

Pond + MBBR

Hāwea WWTP

Pond + MABR

Hellensville WWTP

Common Upgrade Issues – Before we even start

- Influent characterisation
- Unknown inputs
- Large legacy sludge accumulations
- Inappropriate development
- No or insufficient designation
- Population projections
- Future consent conditions

The Comparision

Pond Upgrade ~2 m²/person

Plant Build ~0.3 m²/person

Pond based system

Bio-Mechanical plant

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Tákina, Te Whanganui-a-Tara Wellington

Levels of Service - Nitrogen

Levels of Service - Pathogens

 Pond Upgrade
 New Plant Build

 Filtration &UV
 Ponds alone
 Bio-Mechanical plant

- Better disinfection in the biological processes
- Algal production is a hinderance to disinfection.
- Typically 1 to 2 log₁₀ less inactivation
- Better helminth control Long HRT

 Higher quality FE is easier to disinfect (both reliability and applied dose)

Reliability

Some Issues with Pond Upgrades:

- Temperature
- Sludge not dealt with AND additional sludge load
- High TSS & and very small size of algal particles
- Soluble BOD not first dealt with (before ammonia-N)
- The industry does not fully understand the biokinetics of nitrogen removal in algal based ponds
- Poor process and mechanical engineering
- Poor optimisation of chemical/mechanical systems at commissioning
- High operation and maintenance requirements

Pond Upgrade

Plant Build

Depends on technology chosen

Resilience

Hazard	Pond Upgrade	Plant Build	
General	Resilient to most hazards and quick to reinstate	Design for damage rather than failure.	
	Embankment breach = high volume environmental	Normally IL3. But repair still takes time.	
	incident		
Flooding	Ponds often low lying	Electrical systems vulnerable	
	(e.g. Waipawa)	(e.g Napier)	
Power failure	Significant treatment still available with power	Standby power must be provided.	
	failure		
Peak Load	Limited ability to treat peak seasonal loads.	Can be very adaptable to peak loads	
Peak Flows	Can treat a wide variety of flows with similar	Buffer storage is often required	
	performance.	Esp. with high I&I or and or MBRs	
Toxicity	Reasonably resilient to toxic spills	Susceptible to toxic spills	
	Can be the site of botulism epidemic to birds		

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington

Fewer Operators >Training / Skill Sets Staff / Skills requirements rise >Number Process knowledge Maintenance **Operators** lacksquarerequirement rises Cleaning, Calibration • Process Support **Do Nothing New Plant Build Pond Upgrade** Can continue largely Can be disruptive if reclaiming any • uninterrupted pond area Transitional Easy for a greenfield new build • **Operation** wai water 🔜

Pond Upgrade 0.1 to 0.2 kWh/m³

Includes allowance for Nitrification

Plant Build >0.35 kWh/m³

Green House Gas Emissions

- Scope 3: Chemical Use & Sludge Disposal Emissions
- Scope 2: Electricity Emissions
- Scope 1: Emissions from Discharge & Other Activities
- Scope 1: Methane Emissions from Treatment
- Scope 1: Nitrous Oxide Emissions from Treatment

Odour

Pond Upgrade

- Large surface area remains for potential odour emission
- Seasonal risk at Spring / Summer turnover
- Can be difficult to maintain sufficient odour buffers 150 to 300m
- Higher loading = higher odour risk

Plant Build

- Easier to maintain odour buffers
- More 'contained' so high risk processes are easier to configure for odour capture and destruction

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington

Sludge Quantity, Quality, and Management

Parameter	Pond Based	Plant based
Yield	Significantly Lower	Higher (although can be reduced by using fixed growth system)
Removal	10 - 15 years.	Frequent removal from reactor and site.
Treatment	Digested in pond sludge layer	Typically dewatered Other processes (AD etc.) can be added.
Contamination	Historical screenings and metals contamination %g/kg can be high	Stabilisation required if primary sludge is produced.
Disposal	Can be difficult due to apparent contaminants Often mono-filled on site	Commonly landfilled Opportunities for land application esp. in AU

Potential Cultural Implications

Pond Upgrade

Plant Build

Water New Zealand CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington

Cost

Pond Upgrade

Plant Build

Typically cheaper BUT:

- How much TN to remove? May still need large or multiple reactors
- Future upgrades. Is this a 'sunk cost?
- There will be a cost tipping point where it is no longer cost effective to keep adding electro-mechanical 'bits'

- Concrete, steel & Technology dominate CAPEX
- Power and daily sludge management dominate OPEX

Summary

Evaluation Parameter	Pond Upgrade				New Build Plant
Nitrogen performance			If TN <10 mg/L		
Pathogen performance	Filtration &UV				
Real Estate					
Reliability	Depends on	tech	nology	chosen	
Resilience					
Operation					
Energy					
Carbon					
Odour					
Sludge					
Culture					
Cost					
Future Proof					