Outcomes and lessons: Trading cost for complexity Freshwater Management Tool

Healthy Waters Paradigm Morphum

Tom Stephens, Theo Kpodonu, Mahesh Patel, Peter Nowell, Nick Brown Dustin Bambic, Hana Judd, Caleb Clarke

Outcomes & Lessons Freshwater Management Tool

Stormwater is costly & challenging

Management tools

- Simple question how to improve
- Challenge least cost & to target
- Modelling solution process-based, continuous & optimisable

Waterway Action & Investment Strategies needed

- 1. Water Reform = affordable
- 2. RMA Reform = compliance
- 3. Water & RMA Reform = outcomes

Freshwater Management Tool

Choice matters – save ~75% of cost for urban water quality with "source controls"

BE THE HOW. WHAKAMAUA KIA TINA!

Freshwater Management Tool Choice matters - save ~75% of cost, be more targeted

Dev	vice Type				
Subcatchment Devices		Regional Wetland		Device Capacity (m ³)	
0	Rain Gardens	0	Regional Wetland	0	1 - 200,000
•		•		0	200,000 - 400,000
0	Wetland	Existing Devices		0	400,000 - 600,000
0	Undersized Wetland	0	Drypond	Q	600,000 - 800,000
	Filter System	0	WetlandWetpond	(800,000 - 870,000

Freshwater Management Tool

Targeting matters – save ~90% of cost for rural water quality

on Knowledge Auckland.

×

×

х

Freshwater Management Tool

Targeting matters – save ~90% of cost for rural water quality

Freshwater Management Tool Targeting matters – save ~90% of cost for rural water quality

BE THE HOW. WHAKAMAUA KIA TINA!

Optimisation Complex inputs & approach – purpose governs design, design governs use

Optimisation Input complexity – opportunity mapping

Offtake Criteria	Justification	Data Source(s)
Pipe <100m from edge of potential	Diversion pipelines greater than this length require multiple manholes and unlikely to be	SW Pipe Network (Auckland Council, 2019)
device	installed by directional drilling, therefore deemed too disruptive and expensive to construct.	
If network offtake within 2m of	Treatment device opportunities unlikely to utilise offtakes crossing permanent streams or from	Permanent Streams Layer (Auckland
permanent stream or intersects an	existing treatment devices.	Council, 2018)
existing treatment facility, then remove		
opportunity		swWaterTreatmentFacility (Auckland Council, 2019)
Grade between pipe and device	Selected as minimum grade to allow adequate conveyance of stormwater to device. 1.0%	AC SW Pipe Network swPipe (Auckland
location >1.0%	recognizes that pipe invert is often inferred using pipe ground level as a proxy, incorporating	Council, 2019)
	error margin.	
		DEM (AC, 2016)
	Auckland design manual states 0.1% minimum grade for stormwater pipes	
Assumed excavation depth of device	Assumed earthworks required to prepare device site location for constructed treatment	NA
footprint 1.5m	opportunity. Earthworks that require excavation depth > 1.5m likely prohibited by	
	costs/disruption and less likely to drain back into the network.	
Assumed pipe invert depth of 1.5m if	Pipe invert level was calculated using stormwater network invert levels where available (either	NA
no attribution exists	from the pipe itself or any adjoining infrastructure such as manholes).	
	1.5m represents the typical balance between minimized earthworks/ safe trenching depth and minimum network covers.	
Treatment area exceeds 2500 m ²	Based on min device area / treatment area ratios including viability of public device treating	NA
	multiple private properties.	
Preferential network offtake	Estimated device type is assigned based on device footprint to device catchment ratio. Device	NA

Optimisation Complex inputs & approach – purpose governs design, design governs use

Optimisation Approach complexity (Tier 1) – Best solutions

Optimisation begins in sub-catchment ("Tier 1") in three steps

- A. Design limiting contaminant N, P, CU, Zn, E.coli…
- B. Best solutions $(3M \rightarrow 100) "limiting" load$
- C. Production run (100) "critical" load

Best solutions choices

- Limiting contaminant
- Boundary climate 3M Short-period (average year*, 25-75mm design storm**, wettest month*)
- Convergence

*Real, **Synthetic

Lessons learned

Management tools trade cost for complexity... necessary complexity

"Deliver outcome, save cost & ensure compliance"

Challenging & complex – stormwater is costly & diverse

- **Least-cost** 50-year lifecycle (optimised)
- Action-based x111 diverse interventions on x106 activities, across x5,465 subcatchments (for infrastructure and practices)
- Targeted designed around critical times, sources and treatment needed
- Integrated regionwide mountains to sea
- **Strategic** action, scale, cost & outcome (by sub-catchment)

Are management tools essential to Entity services? (...in Healthy Waters for AMP, LTP, NDC, WQTR)

