

Modelling Symposium

The National Flood Studies Programme for South Africa: Overview and Development to Date

Presented by

Jeff Smithers

Overview of Presentation

- South African hydrology
- Besign flood estimation
- Overview of approaches to design flood estimation in South Africa
- South Africa
 National Flood Studies Programme in South Africa
 - Background and initiation
 - Overview of performance of methods
 - Examples of developments to date
 - Challenges to implementation
- Conclusions

South African Hydrology

https://data.worldbank.org/indicator/ER.H2O.INTR.PC

Demand and Supply in SA

Water Management Areas percentage surplus/deficit for the year 2000 (Source: NWRS)

Inter-catchment Transfers

Design Flood Estimation

- Limit risk of failure
 - Hydraulic structures
 - Drainage systems
- \odot Return Period: T = 1/P_e
- Used for
 - Design and risk assessment of hydraulic structures
 - Flood lines planning and development
 - Managing developments flood lines and inundation levels

Methods of Design Flood Determination in South Africa

Establishment of the National Flood Studies Programme

- Initiated by SANCOLD and WRC in 2013
- Four Working Groups (WGs) established in 2014
 - Rainfall analysis, Flood analysis, Hydrological data, Products used for flood estimation
- S Draft motivation, plan and budget
 - 19 research projects
 - R 28 million (2014 values)
 - Undertaken over an eight year period
 - Multi-institutional approach and capacity development
- S Approval in principle by SANCOLD, WRC, DWS, SANRAL
- S Annual Research Review Workshops
 - Additions and some re-prioritisation
 - Currently extended to 23 required projects

Performance of Current Methods

Performance of Selected Empirical and Deterministic Event-Based Methods (Naidoo, 2020)

- I57 DWS dam sites
 - Catchment areas: 10 108 360 km²
- Wide range of performances
- So spatial trends in performance
- Preliminary results need further confirmation

Developments to Date

Selection of Probability Distribution for DFE (Calitz, 2021)

🖾 Data

- 296 river gauges
- 87 dam gauges
- S Assessment PDs
 - Graphical methods (LMRD)
 - Goodness-of-fit testing
 - Model fit criterion
 - Model uncertainty
- GPA fitted by L-moments recommended for general use for DFE in South Africa

Developments to Date

Regional Flood Methods (Calitz, 2021)

20

15

10

5

Q₁/Q₁ (m³.s⁻¹)

- Model formulations
 - Quantile Regression (QRT)
 - Regional Index Flood (RIF)
 - Probabilistic Rational (PRM)
- General recommendation
 - QRT limited to defined RPs
 - RIF method should be applied in SA
 - Index Flood (IF) =f(A, MAP, D2C, $I_{T=10}$)

Developments to Date

Update - Extreme Design Rainfall (Katelyn Johnson - PhD)

- S Current RLMA&SI (Smithers and Schulze 2003)
 - 1806 stations, 78 homogeneous clusters
- Sew regionalisation
 - 1 641 daily rain gauges
 - Cluster analysis of site characteristics
 - 17 relatively homogenous regions
- Impacts on design and risk
 - 200-year RP 1-day event
 - 60% of values > RLMA&SI
 - Average difference of 13%

Updated 1-day PMP Estimates

(Johnson and Smithers, 2020)

- Updated WMO approach applied
- 380 representative stations
- § 70% of extreme events used in current study after 1960s
- Impacts on design and risk
 - New PMPs > HRU PMPs at 80% of sites

Developments to Date

Ensemble Joint Probability

- Limitation of event-based DFE methods
 - Parameter selection
 - Transforming P_T into Q_T

Ensemble Joint Probability SCS-SA (Dlamini, 2020)

- S Distributions developed for
 - P, T_p, IRDIST, AMC
- Series Performance of Ensemble SCS-SA better than Standard SCS-SA

Performance of Published and Derived SCS CNs for Design Flood Estimation (Maharaj, 2021)

- \odot Poor DFE performance using $CN_{published}$
- Best method(s) identified
 - Replicate CN_{published}
 - Best DFE data derived CNs
- S Feasible
 - Use simulated data to derive CNs
 - CNs for South African Land Ccover & Soil classifications

Developments to Date

SCS-SA CSM

S CSM

- Daily time step ACRU model
- Configured for 5 838 Quinary Catchments (QC) in SA

SCS-SA CSM

- Land cover and soils
 - QC information
 - User selected
- QT computed from simulated Q
- q_{p,T} = f(QT, IRDIST, lag) as per SCS

SCS-SA CSM Performance

- Better than SCS-SA
- QC landcover and soils reasonable
- HRUs (catchment specific info) better than using default QC info

Modelling Symposium 2023

Modelling Group

water

Use of Local Information to Improve DFE

Use of Local Information from Donor Catchments to Improve Selected DFE Methods used in South Africa (Khoosal, 2021)

- S Pilot study 48 sites
- S Transfer DFE errors at gauged donor site(s) to ungauged site
- Sonor catchment selection
 - SP Spatial Proximity
 - PS Physical Similarity
 - IS Integrated Similarity

One or more donor catchments

Non-Stationary Extreme Rainfall Analysis: Preliminary Pilot Study Results (Katelyn Johnson - PhD)

Free State

Eastern Cap

Preliminary analysis

- KwaZulu-Natal East Coast
- 39 sites (>40 years, little missing data)

Mann-Kendall and Sen's tests

- 24 positive trends (1 significant)
- 14 negative
- 1 no trend

Stationary vs non-stationary model

- GEV distribution parameters modelled using time as a covariate
- 35 stations better modelled through the stationary model (lower AIC, BIC and RMSE)
- Solution Solution

1976 1981 1986 1991

2001

2006 2011 2016

Other Current Studies

- Update to Regional Maximum Flood
- \odot National estimation of catchment T_p
- S Urban flood hydrology
- S Areal Reduction Factors (ARFs)
- Trends in extreme events and DFE
- © Temporal distributions for daily rainfall disaggregation

faster time to peal

(Houghton-Carr, 1999)

Some Challenges to Implementation

- Beclining Hydrological Networks (Pitman, 2011)
- Length of records
- Missing data
- I Flow gauging limitations
- S Limited research capacity
- $\ensuremath{\textcircled{\sc {S}}}$ Focused and sustained funding for NFSP
- Solution Access to rainfall and climate data from SAWS

Conclusions

South Africa National Flood Studies Programme in South Africa

- Plan in place
- Endorsed by WRC, DWS, SANCOLD, SANRAL
- Multi-institutional team approach adopted
- International collaboration
- Capacity development
- Some progress made to update and modernise methods for design flood estimation in South Africa
- Convert research products into practice
- Still a lot to do collaboration welcomed!

Acknowledgements

Water Research Commission (LAN)

SANCOLD

SANCOLD (Los)

RAENG – UK (LA)

Umgeni Water (LA)

Colleagues

(LAN)

R

Central University of

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Thank you

© Comments and questions welcome!

