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ABSTRACT  

As water suppliers throughout New Zealand tackle the twin challenges of climate change and limited 

investment budgets, artificial intelligence (AI) and machine learning applications can help us achieve 

both sustainability and efficiency goals, giving utilities the insights needed to streamline and 

optimise operations and capital investments. While the conceptual promise of AI is often lauded, 

many utilities find that real-world considerations such as historical data quality and quantity can 

interpose significant limitations on the value of AI applications.  

This paper will discuss key factors in identifying viable machine learning applications, highlighting 

data requirements and methods for supplementing real-world historical data, as well as outlining 

opportunities for tiered AI implementations that grow with an organisation as it gains digital 

maturity. Starting from available data and planning out future data collection, machine learning 

applications can increase in sophistication and value as additional datasets become available.  

By further augmenting our existing datasets with synthetic data, “informed” AI allows machine 

learning models to overcome the challenges of narrow historical datasets, which frequently capture 

only a small range of operating conditions.  Leveraging both scenario analysis and operational 

forecasting capabilities, AI applications are giving utilities an ever-expanding set of insights into 

chemical and energy optimisation, greenhouse gas, and cost-reduction opportunities. Key case 

studies from around the world will showcase how global best practices in leveraging machine 

learning can be used to help New Zealand utilities achieve sustainability and cost-savings goals. 
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INTRODUCTION – SMART UTILITIES 

The “smart utility” landscape is rapidly evolving along with our understanding of the array of tools, 

techniques, benefits and pitfalls of digitalisation across our business. Referred to interchangeably as 

a “smart water grid,” “digital water utility,” “intelligent water utility,” “intelligent water system” and 

“data-driven water utility,” the label of “smart utility” carries with it an implication of overlayed data 

collection, information creation and insight extraction to inform decision making (Water Research 

Foundation Project [WRF] 4714, 2020). Critically, the informed decision making at a smart utility 

targets and realises better business outcomes in alignment with the utility’s goals, which typically 

including high service reliability, cost efficiency, energy efficiency and carbon footprint minimisation.  

The New Zealand water industry is squarely situated in the midst of numerous drivers to reduce 

greenhouse gas emissions, curtail energy consumption and deliver high-caliber three-waters services 

at an affordable cost, and as such is well positioned to see the potential benefits of digitalisation.  

The global Covid 19 pandemic and recent droughts, storms and extreme events have also fueled a 

resilience focus for the water industry, with an emphasis on business and operational continuity, 

cyber protection and data accountability and accessibility.  

In many utilities, the adoption of digital tools and “smart” practices is significantly higher during 

planning and design phases of a (physical) asset lifecycle, and conversely, lowest during the 

operational and maintenance phase (WRF Project 4836, 2017). Furthermore, data flow across the 

lifecycle of our physical assets is often suboptimal with respect to feeding forward and feeding back 

information from different stages of the asset lifecycle. 

For example, questions from the design stage 

of a new physical asset could include: 

- What kinds of pumps are currently in 

operation across our system? 

- Which pump type has the lowest 

maintenance requirements, in our historic 

experience? 

- How much down time is associated with 

pump maintenance?  

- What are the cost implications of selecting 

exclusively high-quality, low-maintenance 

pumps in our future designs? 

A utility looking to answer these questions may 

not have easy access to query the appropriate 

data. While the necessary information may be 

captured and available somewhere within the 

organisation, that data loses significant value by not being accessible to the right people at the right 

time. There is increasing acknowledgement of the need to have a digital thread that spans the asset 

lifecycle, with digital artifacts created at each stage that can be leveraged both up- and downstream.  

 

Figure 1: Digital adoption is typically 
lower in the later phases of the asset 

lifecycle 



A survey of global water utilities found that while immense volumes of data are being collected, only 

an estimated 10% of data collected is actually used (WRF Project 4836, 2017), and in general the 

digital maturity of water utilities Two pivotal issues hamper a utility’s ability to leverage data and 

take insight-based action: data quality and a (perceived) lack of talent in the utility to plan, deploy, 

integrate and manage the digital practices required.  

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 

Amidst the backdrop of the “smart utility” landscape, artificial intelligence describes a set of tools 

which can help us interpret both stockpiled and live data, and can form part of the overall smart 

utility approach. A subset of artificial intelligence, machine learning uses computational power to 

“identify patterns, make decisions and improve themselves through experience and data” (Columbia 

University, 2022).  Figure 2 provides an overview of three key learning methods: supervised, 

unsupervised and reinforcement, and their typical applications in the water industry. 

Supervised learning is sometimes referred to as “learning by example.” It uses data that have paired 

inputs with “correct” or “desired” outputs . These data sets are referred to as “labeled data.” During 

training, patterns are created that correlate the inputs with the desired outputs within the machine 

learning model. Selecting appropriate “features” (parameters or system attributes) to include in a 

supervised learning training dataset can be a critical step, which sometimes requires an additional 

step for preliminary data investigation.  

Unsupervised learning refers to the identification of patterns in data sets containing data points that 

are neither classified nor labeled. Unsupervised learning is uses machine learning algorithms to  

explore relationships between data, and can be useful in discovering how different parameters are 

related in complex systems. This type of learning can be used to help select the most meaningful 

“features” to use in follow-on learning. 

Reinforcement learning uses a trial and error approach to establish a relationship model. The model 

is trained by rewarding correct or desireable outcomes and penalising less desireable outcomes.  It 

icould be hought of as similar to training a pet using treats and punishment.  

 



 

MACHINE LEARNING ADOPTION  

The value of data deminishes with time, and data is most valuable with context. Machine learning is 

typically used because it can enable us to quickly analyse large volumes of data, and provide timely 

input for descisions, based on historical data and outcomes rather than rules, equations or 

anecdotes. It is typically most useful in modelling complex systems, where a mechanistic or 

theoretical model may struggle to capture all the variability in outcomes. As highlighted in Figure 2, 

many water industry applications of machine learning use supervised learning approaches, which 

critically rely on appropraite feature selection, and on labelled datasets. 

Utiltiy goals for implementing machine learning applications typically fall into two major goals: 

- Optimising operations (be it for better treatment outcomes, lower climate impact, lower 

chemical and energy costs, or a combination of optimisation targets) 

- Predicting system failure (to support operational resiliency and capital/maintenance 

planning) 

Several example applications for machine learning are outlined in Table 1, with the location of key 

case studies shown in Figure 3. 

 

 

 

 

Figure 2: Artificial intelligence learning methods and typical applications in the 

water industry 



Table 1: Machine learning applications and example implementations 

Machine Learning Goal Application Example Implementation(s) 

 

Treatment 

optimisation 

Identify chemical and 

energy savings, 

improve treatment 

performance 

Treatment Optimisation – Melbourne 

Winneke Water Treatment Plant (WTP), 

Woodland Davis WTP, Singapore Public 

Utilities Board CCK WTP 

 

Image 

classification 

Condition assessment 

image coding 

Dragonfly - Jacobs-Hitachi partnership, using 

machine learning to complete sewer 

condition assessment scoring of CCTV 

inspection footage   

 

Equipment 

performance 

optimisation 

Identify equipment 

performance 

optimisation 

opportunities 

Pipe Failure Prediction – Yarra Valley Water 

AquaDNA: UK Pump and Equipment Health 

monitoring 

 

New insights 

Discover hidden value 

in online or grab 

sample data  

Forest Fire water quality impacts – Eugene 

Water and Electric 

 
Forecasting 

Predict raw and 

treated water quality 

based on historical 

and on-line 

information 

Influent/Raw Water Quality Changes and 

cyanobacterial taste and odour compound 

prediction – Clayton County, Georgia  

Demand/Production Forecasting – 

Silverdale, Washington 

 

Anomaly 

detection 

Instrument 

Malfunction, 

Maintenance 

Monitoring, 

Contaminant Warning 

Contaminant Warning Systems – New York, 

Philadelphia, Dallas, San Francisco, 

Cincinnati, Glendale 

 



In drinking water treatment, coagulation control is a prime candidate for machine learning based on 

several factors: 

• There is no simple coagulation “equation” 

• Long detention times make it difficult to react to changes in coagulation outcomes 

• Coagulation decisions are frequently made based on experience, intuition, and trial and 

error 

• Existing practices (e.g. regular jar testing) are manual and labour intensive 

• Optimisation can improve water quality, enhance chemical and energy efficiency, and lower 

costs for chemicals, backwash pumping and residuals management 

Chronic over- or under-dosing is difficult 

to combat while maintaining plant 

operations within acceptable treated 

water quality parameters, creating an 

optimisation opportunity if treated 

water outcomes can be accurately 

predicted in real time (see Figure 4).  

To this end, machine learning 

approaches are being applied for 

coagulant dosing optimisation at the 

Winneke WTP in Melbourne, Australia, 

the CCK WTP in Singapore and the 

Woodland Davis WTP in the United 

States, as shown in Figure 3.   

 

Figure 4: coagulation control optimisation 
opportunity 
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Figure 3: locations of treatment optimisation machine learning case studies 

Case Studies

Singapore PUB 

Treatment 

Optimization 

Melbourne 

Water Winneke

Treatment 

Optimization

Woodland Davis 

Treatment 

Optimization



WOODLAND DAVIS WTP CASE STUDY 

The objective of machine learning 

application at the Woodland Davis WTP 

were two-fold: 

1. Develop a machine learning model 

to optimise chemical usage 

2. Create a dashboard display 

recommended changes in real time  

The treatment process is shown in Figure 6, 

with the model input monitoring data 

highlighted. The optimisation target for the 

machine learning model was based on a combination of three factors:  

1. Minimise the chemical cost 

2. Minimise settled water turbidity 

3. Minimise the frequency of changes to the coagulant dosing setpoint 

 

 

The first step in model development was to clean and review the available data, identifying any 

erroneous, blank or invalid data, then selecting the parameters relevant to the optimisation target. 

While a significant volume of data was available through the plant SCADA, not all of it was material 

to the prediction of settled water turbidity. The Woodland Davis model was developed based on the 

available historical plant data from 2017 through 2019 taken at a 15-minute increments. 80% of the 

data was used to train the model, while the remaining 20% was used for model validation, as shown 

in Figure 7.  

 

 

Figure 5: Woodland Davis WTP 

 

Figure 6: Woodland Davis WTP treatment train and water quality monitoring 



 

Based on the trained model, a recommended coagulant dose was projected by the model to meet 

settled water turbidity target (as shown in Figure 8) with the recommendation and financial 

 

Figure 7: Trained model projections of settled water turbidity 

 

Figure 8: Trained model projections of settled water turbidity 



implications displayed on a dashboard for operators’ consideration in making dosing decisions 

(Figure 9). A 9% reduction in overdosing was projected on average, indicating general overdosing 

historically, and cumulative annual cost savings of $54,000-$72,000 were projected, depending on 

the settled water turbidity target.   

 

HYBRID MACHINE LEARNING 

As noted above, candidate applications for machine learning are often focused on areas where 

mechanistic understanding doesn’t capture the true system complexity and variability. While 

machine learning algorithms can help us work with these complex systems on the basis of empirical 

outcomes, the black-box nature of these algorithms can make it challenging to interpret their 

outputs in the context of our theoretical understanding. In some cases, more advanced machine 

learning applications can also build on our mechanistic understanding, leveraging the benefits of 

both approaches through a hybrid model, as outlined in Table 2.  

Table 2: Machine learning, mechanistic and hybrid modelling tradeoffs 

 Pure Machine Learning Mechanistic Models                  Hybrid 

Benefits 

- Predictive abilities for 
systems with unclear 
relationships 

- Fast 

- Well-understood by 
industry 

- Transparent reasons for 
actions 

- Combines the 

strengths of both 

approaches 

Detractions 

- Does not handle 
uncommon situations 
well 

- “Black Box” does not 
provide understanding 
for model users 

- Inherent uncertainty of 
water/wastewater 
processes invalidates 
discrete answers 

- Limited full-scale 

experience 

 

Figure 9: model output dashboard 



- Requires frequent 
maintenance to keep 
relevance /accuracy 

 

As an example application, a hybrid approach could allow a model to manage influent unknowns and 

variability of biological and chemical reactions to different stressors in a wastewater treatment 

context. This is the topic of a current Water Research Foundation Project (#5121), investigating 

Innovative Predictive Control Strategies for Nutrient Removal. This work is considering multiple 

applications of a proposed hybrid controller at a range of wastewater facilities, blending machine 

learning and process mechanistic modelling for: 

- Enhanced biological phosphorus removal (EBPR) stability & prediction of metal salt addition 

requirements for Total Phosphorus (TP) compliance. 

- Enhanced nitrogen removal (ENR) performance   

- Energy reduction  

The project is targeting a demonstration of short-term optimisation functions and longer-term (>10 

days) predictive capabilities of potential issues related to phosphorus and nitrogen management, 

and is part of industry-leading efforts to advance use of hybrid modelling in a smart utility 

environment. 

INFORMED AI 

While hybrid modelling addresses on potential issue of machine learning – namely, the black-box 

nature of the model itself – it also presents an opportunity to enhance the training datasets used in 

developing the machine learning models through the production of “synthetic data” from a 

mechanistic model.  

Generally, data captured in water and wastewater operations lacks “persistency of excitation” – i.e. 

it is fairly stable withing typical operating windows and does not explore the system limitations. By 

nature of the reliability of our systems, and the need to provide continuous service to the public, it is 

generally undesirable and often impractical to obtain real data from a live system operating under 

“extreme” conditions. However, persistency of excitation is necessary to identify the underlying 

dynamics of complex systems – if inputs are consistently static, the machine learning algorithms 

cannot learn much form the complex relationships between different factors.  

A classical example of an informed artificial intelligence approach is in the training of autonomous 

vehicles. While a self-driving car may have driven millions of kilometers on real roads to train a 

driving algorithm, they are typically trained on billions of kilometers of “simulated” roadways as well 

to teach the algorithm to manage atypical but often vitally important circumstances. 

In a water utility context, mechanistic models – for instance, hydraulic and/or process digital twins – 

give us the means to produce model-training data corresponding to different scenarios, which could 

happen in the real world but may not have been captured in the historical data. The use of this 

synthetic data produces an “informed” AI model. 



By further augmenting our existing datasets with synthetic data, “informed” AI allows machine 

learning models to overcome the challenges of narrow historical datasets, which frequently capture 

only a small range of operating conditions.   

 

DIGITAL ASSET PLANNING 

Machine learning, hybrid models and informed artificial intelligence present significant opportunities 

to make use of water utility data. However, it should be noted that significant investment is often 

needed to realise the full value proposition of digital assets, including machine learning. Like a 

physical asset, these digital entities have a life cycle of their own, with planning, design, 

construction, operational and maintenance needs to be considered as part of their implementation. 

And like our physical assets, they do not stand alone must be integrated with existing assets, and 

designed to accommodate future expansions and changing needs.   

WRF project 4714 (2020) developed a digital maturity model to benchmark utility and industry 

status, and highlighted 7 key characteristics of a “Smart Utility:” 

- Strategy & Vision 

- Data Management 

- Integration & Interoperability 

- Analytics & Information Use  

- Risk & Resiliency 

- Workforce 

- Asset Management 

Given the rapid evolution of digital platforms, and our changing understanding of data needs, there 

can be an understandable impulse to “wait and see” rather than investing in digital assets that may 

not be compatible with our future systems. However, by developing a strategy and vision for long-

term organisational digitsation, utilities can look to establish their smart water systems 

incrementally, realising short term benefits while building towards greater combined benefits once 

multiple tools are in place.  

In the artificial intelligence context, a pure machine learning application could be developed, 

providing immediate benefits in optimisation. A stand-alone mechanistic digital twin model could 

similarly provide short term benefits for scenario testing and operator training. If each is developed 

incorporating interoperability considerations, these discrete tools can later be linked to provide 

hybrid modelling and synthetic data generation, providing even greater benefits as a combined 

system. This staged approach allows utilities to adopt, test and prove out each tool without the need 

to develop a full combined system before deriving any operational benefits. 

CONCLUSIONS  

Leveraging both scenario analysis and operational forecasting capabilities, artificial intelligence 

applications are giving utilities an ever-expanding set of opportunities for chemical and energy 

optimisation, greenhouse gas, and cost-reduction opportunities.  



By pairing pure machine learning with a hybrid mechanistic modelling approach, we can peer inside 

the black box to glean further insights into the relationships and parameters influencing treatment 

outcomes. We can also further leverage mechanistic models to augmenting our existing datasets 

with synthetic data. In this way, an informed artificial intelligence approach allows machine learning 

models to overcome the challenges of narrow historical datasets, which typically capture only a 

small range of operating conditions.     

By designing our data systems and digital assets with long term integration and interoperability in 

mind, we can make staged investments to build new tools, such as machine learning applications for 

short-term insights, then obtain incremental value when pairing them with mechanistic digital twins 

down the road.  

 

ACKNOWLEDGEMENTS 

Raja Kadiyala, Jacobs Digital Market Director 

Kim Ervin, Jacobs Global Technology Leader for Applied Digital Tools in Drinking 
Water and Reuse 

 

REFERENCES 

Water Research Foundation Project 4836, 2017. Leveraging Other Industries - 

Big Data Management Phase I.   

Water Research Foundation Project 4714, 2020.  Intelligent Water Systems: 

Digital Maturity Model 

Water Research Foundation Project 4978, 2021. Application of Big Data for 

Energy Management in Water Utilities 

Columbia University, Fu Foundation School of Engineering and Applied Science. 

Artificial Intelligence (AI) vs. Machine Learning 

<https://ai.engineering.columbia.edu/ai-vs-machine-learning/#:~:text=Put% 

20in%20context%2C%20artificial%20intelligence,and%20improve%20themselv

es%20through%20experience>, accessed 16 August, 2022 

 


