

PROGRESS AND PERSPECTIVES ON THE USE OF DYE STUDIES IN WASTEWATER DISCHARGE IMPACT ASSESSMENTS

Carlos Campos, Ross Sneddon, Paul Barter Coastal & Freshwater Group

Water New Zealand Conference & Expo 2019 18–20 September 2019, Hamilton

DYE STUDIES AND WASTEWATER DISCHARGE MONITORING

- Types of monitoring programmes:
 - Baseline monitoring to understand the state of the receiving environment before commencement of the discharge. As part of an AEE.
 - Monitoring to verify compliance with resource consent conditions/limits.
 - Investigative monitoring to determine the nature and cause of the problem.
- Applications of dye tracing studies:
 - Discharge measurements
 - Discharge retention, buildup and flushing
 - Time of travel
 - Dispersion studies

FUNDAMENTAL AND PRACTICAL ASPECTS

- Dye is introduced into a discharge/waterbody and subsequently tracked in the receiving waters over time.
- Tracking can be done visually or by measuring dye concentrations with a fluorometer (in situ or in the laboratory).
- Duration of dye release:
 - Batch/slug
 - Single tide
 - One-half tidal day
 - Whole tidal day

(these can't be done simultaneously)

Typical dye response curves:

BATCH/SLUG DYE RELEASE

WASTEWATER MIXING AND DISPERSION

Modified from Tate et al. (2019)

CONTINUOUS/FLOW PROPORTIONAL DYE RELEASE

- Example dye injection setup up and approach for studying buildup and dispersion of effluent from UV disinfection plant in estuary:
 - > 60 L dye mixed with deionised water (A).
 - Dye mixture injected continuously over 12.4h following disinfection (B).
 - Dye fluorescence measured by submersible fluorometer inside torpedo (C).
 - Dye concentrations and edges of the plume tracked in the estuary via boat (D).
 Dye conc. plotted in real-time on GIS map.

MONITORING INSTRUMENTATION

Compact, highperformance, low power fluorometers

Frame with temperature sensor and current meter; jet ski with fluorometer

AUV with ADCP, CTD and fluorometer

UAV with camera

Aircraft with multispectral dye fluorescence camera and hyperspectral pushbroom visible-to-NIR imager

KEY CONSIDERATIONS

- Tracer selection. Depends on the objectives of the study and characteristics of the study site.
- Characteristics/design of the discharge
- Freshwater flows
- Bathymetry
- Tidal flows/wind effects
- Physical structures

VALIDATION OF MIXING ZONE MODELS

 Field-verified dilutions from continuous dye releases to improve prediction of effluent dilution under reduced/increased flow conditions.

Comparison of modelled and observed dilutions:

MIXING ZONE AND ECOLOGICAL EFFECTS

STEADY-STATE DILUTION OF WASTEWATER EFFLUENT

MICROBIOLOGICAL IMPACTS IN SHELLFISH GROWING AREAS

 Exclusion/buffer zones around WWTP outfalls are increasingly required to mitigate risk of human exposure to pathogenic viruses.

Example buffer zone in a US oyster growing area:

Experimental site: deep, well flushed coastal embayment with mussel aquaculture site.

Secondary-treated effluent discharged at site 5 via long sea outfall.

MICROBIOLOGICAL IMPACTS IN SHELLFISH GROWING AREAS

Microbiological monitoring

Norovirus and E. coli quantified in oysters (C. gigas) and mussels (Mytilus spp.) using ISO/TS15216-1 (RT-PCR) and ISO16649-3 (MPN), respectively.

Hydrographic studies

- Dye tracing to study dispersion, dilution and time of travel of secondary treated effluent in the growing area.
- Drogues with Globalstar satellite modems and GPS released at shellfish cage sites to study surface water movements.

Satellite remote sensing

Landsat 8 imagery to describe water circulation processes (mainly river plumes).

MICROBIOLOGICAL IMPACTS IN SHELLFISH GROWING AREAS

Shellfish in cages deployed at 3 m depth to capture buoyant plume:

Satellite tracking drogues:

SATELLITE REMOTE SENSING

 Turbidity fields derived from Landsat 8 imagery provided high-resolution information on small scale river plume structures.

Microbial source attribution: E. coli primarily associated with river discharges.

MODELLED DISCHARGE BUFFER ZONE SCENARIOS

GIS mapping of dye tracking data to illustrate:

6,000:1 dilution

1,000:1 dilution

6,000:1 dilution for 90th percentile WWTP flows

1,000:1 dilutionfor 90th percentile WWTP flows

MICROBIOLOGICAL IMPACTS OF SEWER OVERFLOWS

- Dye study to determine time of travel of effluent from combined sewer overflow
- ToT considered as part of protocol to manage norovirus contamination in designated oyster growing water and bathing waters.

Dilution ratio	Mean concentration of norovirus (copies/g)	Mean concentration of E. coli (MPN/100g)
300:1	1,200	260
1,000:1	600	100
5,000:1	200	30
10,000:1	100	15

SUMMARY

- Integration of dye fluorescence measurements with data from sensor technology, underwater vehicles and remote sensing improves understanding of the fate and behavior of effluent plumes.
- New marine monitoring instrumentation provides more comprehensive modelling outputs to assist planning/design of outfalls and impact assessment of effluent discharges.
- An initial concept of effluent plume behavior should be developed prior to conducting the field studies. This includes characterisation of 'background' fluorescence levels.
- Multiple dye studies performed under different conditions may be needed to adequately characterise both initial (near field) dilution and far-field vertical and horizontal processes.

ACKNOWLEDGEMENTS

- Cawthron Coastal & Freshwater Team
- Greg Goblick (US Food and Drug Administration)
- Peter Miller (Plymouth Marine Laboratory)

Further information, reports and papers: carlos.campos@cawthron.org.nz

