

Blower Technologies & Energy Efficiency Opportunities

Tony Long

KAESER Compressors NZ Limited Business Development Manager

Contents

- 1. WTP air applications
- 2. Blower operating principles
- 3. Specific power explained
- 4. Packaged blower units
- 5. Energy efficiency in correct control
- 6. Summary

1. WTP air applications Water aeration

1. WTP air applications Sewage plants – aerator membrane activation basin

2. Blower operating principles Types and classification of air compressors

Rotary blower vs. Screw blower Displacement compressors – internal & external compression

Internal compression - a certain pressure is always built up, independent of the process requirements:

Compressed air outlet

External compression - it is pushed out against the pressure losses in the process and therefore compressed in the piping between blower and application:

KAESER Rotary Blowers
Basic information and design of blower blocks

PD vs Screw blower WWTP aeration – typical projects division by differential pressure

- PD blower optimal below +550 mbar
- Screw blower optimal above +550 mbar
- Optimized Sigma rotor profiles are available by pressure range keyword "overcompression"

Turbo compressors

Lobe vs Screw vs Turbo Which is better?

Excellent energy efficiency over the full speed range!

3. Specific power explained Verification of performance 'wire to air' – ISO 1217 part C & E

ISO 1217 = Measured and stated performance for displacement compressors

Part B = airend

Part C = complete machine, part E = machine complete – variable speed

Range	Air delivery	Specific power	ldle power
1,5-15 m³/min	5 %	6 %	20 %
> 15 m³/min	4 %	5 %	20 %

Example: max. deviation to part C

Specific power = total power input/air delivery = kW / m³/h = kWh/m³, also J/m³

Contributors to power loss

- Drive transmission systems
- Electric motors
- Internal components
- Frequency drives
- Blower blocks

Blower consumption (1), drive losses (2), and motor efficiency (3), all impact specific power

Why look at blowers in regards to energy savings? Energy distribution at typical waste water treatment plant (WWTP)

Aeration biology:

- biggest cost factor energy
- nearly constant differential pressure
- machine run time 4000 –
 6000 hours per year

Energy share (%)

- Sewage lifting
- Mechanical treatment
- Biological treatmt.
- Sludge dewatering
- Sludge treatment
- Air treatment.
- Other

1919 - 2019 TRADITION & INNOVATION

4. Packaged blower units

Fixed speed / frequency control with a complete set of sensors, linked to the controller; all components completely mounted and cabled

- Suction temperature
- Discharge temperature
- Suction pressure
- Discharge pressure
- Oil level monitoring
- Oil temperature monitoring by Pt100
- Filter differential pressure
- Sound enclosure temperature by Pt100
- PTCs main motor
- Vent fan overload protection

5. Energy efficiency in correct control Clarity and connection with onboard control

Onboard PC based controllers

Central PC based controllers

6. Summary

- 1. Blowers are large energy consumers
- Turnkey plug and play blowers reduce installation time and commissioning
- 3. Blower package should be compared using ISO standards
- 4. Specific power of the **complete** package is important
- 5. Complete systems control is important

