

Location – Waitaki District, NZ

Introduction

Hamnak Pipeline – formally the H2Our Health Project

- Construction of a new 33.2 km watermain and two pumping stations.
- Landmark project. Longest PVC-O pipeline in New Zealand.
- Connecting Oamaru water reticulation with Herbert/Waianakarua and Hampden/Moeraki Water supply reticulations.
- PVC-O Pipe was used for bulk of the pipeline (DN100 PN12.5 up to DN200 PN12.5 Series 2).
- PE100 used for road and river crossings by HDD

Project Stakeholders

Principal

Waitaki District Council

Project Manager Rationale **Designer**Fluent Solutions

ContractorWhitestone Contracting Ltd

Merchant

Humes Pipelines

Pipeline Supplier Iplex Pipelines NZ Limited

The Challenge

Former Infrastructure

- Non-compliant with Drinking Water Standards New Zealand (DWSNZ).
- Vulnerable to drought, flood events & contamination.
- Frequent supply restrictions/Boil Water notices.
- Undersized for future population & business growth.
- Maintained and governed by local scheme operators.

Former Herbert-Waianakarua water supply intake (Normal conditions)

Former Herbert-Waianakarua water supply intake (Flood conditions)

Several design solutions considered...

- Dedicated/Separate Water Treatment Plants.
- A dedicated transmission pipeline connecting to the Oamaru reticulation considered most efficient.
- Extensive hydraulic & network flow modelling carried out to find optimum solution.
- Final pipeline route considered concurrent renewal/replacement of aging reticulation.
- Final design allowed PE100 and PVC-O as acceptable material options.
- Total length of pipeline circa 34 km. 5 x water and roadway crossings installed by HDD.
- 2 x booster pump stations included in the design.

Final agreed pipeline route

Specification allowed PVC-O or PE100

- Gave Tenderers freedom to offer alternative material choices.
- Enabled construction methodologies that were cost effective.
- Achievable within the 14 month installation window.
- PVC-O and PE100 permitted for bulk of project
- PE100 only for HDD waterway and roadway crossings

Pipe Specification for bulk of pipeline

	Size 1 (PN12.5)		Size 2 (PN12.5)		Size 3 (PN12.5)	
Option	А	В	А	В	А	В
Material	PVC-O	PE100	PVC-O	PE100	PVC-O	PE100
Nominal Diameter	DN200 S2	DN250 S1	DN150 S2	DN180 S1	DN100 S2	DN125 S1
Mean ID (mm)	218.4	212.4	166.8	152.8	114.5	106.1

Pipe Specification for water & roadway crossings

	Size 1 (PN16)	Size 2 (PN16)
Material	PE100	PE100
Nominal Diameter	DN250 S1	DN180 S1
Mean ID (mm)	203.4	146.3

PVC-O selected by Contractor

Enabled a fully compliant tender

- No competitive advantage to using PE100 in a mostly open-cut project.
- PVC-O delivered highest hydraulic flow capacity for given size and pressure class.
- Simple in-trench jointing of PVC-O meant speedier Construction and reinstatement.
- PVC-O avoided external fusion costs associated with a PE100 option.
- Asset Owner and Contractor were familiar with PVC-O and confident with this material choice.
- PE100 only for waterway and roadway crossings.

What is PVC-O?

- Manufactured by stretching a PVC-U feedstock pipe just above glass transition temperature to provide molecular orientation.
- Developed in the UK in the 1970s by Yorkshire Imperial Plastics.
- Widely used in Civil Infrastructure and Rural Water projects in ANZ since the early 2000s.
- Greatly improved mechanical and physical properties.
- Stretch is achieved in mono or bi-axial directions.
- Has demonstrated excellent seismic resilience in New Zealand Earthquakes

Examples of molecular orientation

Bi-axial stretch during manufacturing

PVC-O performance

Innovations and transitions

- Open-cut installation methodology used for bulk of project.
- Two pipelaying crews operating at any given time
 => up to ~200m/day lay-rates.
- HDD installation for waterway and roadway crossings including a 200 m drill shot under Kakanui river.
- Innovative methods used to provide negative buoyancy for some river crossings.
- Particular care taken with PVC to PE transitions
 =>PVC DI Flanged End secured to brackets cast into sizeable anchor blocks.

Kakanui river crossing

PVC-PE transitions

Construction Methodology

Project Planning and Execution

- Project started in July 2017, handed over to Asset Owner in September 2018.
- Consultation with 41+ Landowners critical Dedicated Contractor liaison resource appointed.
- Clear communication & agreements on access, HSE issues, risk management & reinstatement.
- Effective sub-contactor management.
- Mycoplasma Bovis Outbreak July 2017.
- Access to affected properties on pipeline route in accordance with MPI Guidelines

Waitaki DC Mayor Gary Kircher and Assets Group Manager Neil Jorgensen

The successful outcome...

- On time, on budget and delivered on expectations.
- 1300+ residents now have access to clean, DWSNZ compliant drinking water.
- Latest generation of PVC pressure pipe used on project.
- Open + transparent consultation with landowners from project outset.
- Well received by Industry. Contractor won a CCNZ award for the project & Asset Owner was Highly Commended in LGNZ awards

Les Drummond – former caretaker of Wainakarua RWS at opening ceremony

Billy Wilson and Julian Hardy – from Whitestone Contracting with CCNZ Award

Acknowledgements

The author gratefully acknowledges the assistance of the following in the preparation of this paper:

- Waitaki District Council
- Whitestone Contracting
- Fluent Solutions
- Humes Pipeline Systems
- Iplex Pipelines NZ Limited

