Considerations for Selection of Energy Dissipation Valves LANGFORD SUE #### Outline - Purpose - Typical applications - Fundamentals - Valve types - Considerations when selecting valves - Case studies and lessons #### **Typical Applications** - In-line pressure reduction (PRV) - End of a falling main (PSV) - Atmospheric discharge from pressure main or dam - Hydro-power plant bypass #### Some Fundamentals Bernoulli equation $$\frac{\rho V^2}{2} + \rho g h + P = constant$$ Velocity => turbulence => energy dissipation $$\Delta P = K \frac{\rho V^2}{2} \qquad \Delta H = K \frac{V^2}{2g}$$ ## Energy Dissipation $\frac{\rho v_1^2}{\rho v_1^2}$ #### Cavitation #### Cavitation Index $$\sigma = \frac{(P_{upstream} - P_{vapour})}{(P_{upstream} - P_{downstream})}$$ Courtesy of Valmatic ## Low-Moderate Pressure Dissipation - Orifice plate - Butterfly - Pinch - Ball - Plug - Globe (PSV/PRV) ## Moderate-High Pressure Dissipation - Segmented ball - Multi-orifice - Multi-port sleeve - Needle/plunger - Fixed cone/hollow jet Courtesy of Ramén Valves AB - Segmented ball - Multi-orifice - Multi-port sleeve - Needle/plunger - Fixed cone/hollow jet D = Inlet Pipe Diameter/Nominal Valve Size - Segmented ball - Multi-orifice - Multi-port sleeve - Needle/plunger - Fixed cone/hollow jet Discharge Shroud (If Required Courtesy of Bailey Valves - Segmented ball - Multi-orifice - Multi-port sleeve - Needle/plunger - Fixed cone/hollow jet Courtesy of Ozkan Valves - Segmented ball - Multi-orifice - Multi-port sleeve - Needle/plunger - Fixed cone/hollow jet Courtesy of Vortex Hydra Valves Considerations when Selecting Valves ## System and Fluid Properties - Range of flows and pressures - Multiple valves in parallel or series - Frequency and duration of flow - Criticality (duty/standby) - Solids and grit - Free passage size - Wear on valve seats and bearings - Controllability (v-ports) - Seating/unseating actuation/torque - Transient pressures #### Cavitation - Cavitation = noise and vibration - Avoid cavitation - Provide sufficient backpressure/submergence - Multi-stage pressure drop (valves in series) - Control unavoidable cavitation - Valve selection and sizing base on actual test data at the required valve size (not extrapolated) ## Suppliers - Off-the-shelf vs bespoke valve - Supplier's reputation and support during design and operation - Testing (physical testing, CFD) - Previous installations and performance - Lead time - Spares #### Construction - Cost size, pressure class, material - Supporting structures - Size and depth - Foundations valve mass, geotechnical conditions - Noise attenuation - Actuators - Power supply, instrumentation, comms/telemetry #### Operations and Maintenance - Position indication or mechanical limiters - Maintainable components - Frequency of inspection and maintenance - Access - Hatches and ladders - Ventilation - Lighting - Restricted/confined space access - Crane access, removable covers - Drainage - Erosion control of any free discharge - Public access #### Raw Water River Discharge - Enlarge two existing raw water DN225 scours to DN1000 outlet to a river - Supplement environmental flows (2 weeks twice per year) - 1.2m³/s discharge at each site - 135m pressure - Key issues high pressure, noise, ecology, indigenous heritage, value-for-money (constructability and risk) | Option | Benefits | Risks | |---|---|---| | Submerged multiport sleeve valve in a discharge chamber | Proven for high dP Valve type was known to authority Low risk of cavitation and vibration | Large and heavy Valves and installation are expensive Risk of noise Large buried structure required (safety) in difficult ground next to river Limited suppliers, long lead times for spares or replacements | | Inline needle valve or end-of-line fixed cone or hollow jet valve | O O | Large and heavy Valves and installation are expensive Required large supporting structures (pit or headwall) in difficult ground next to river Manage 'rooster tail' free discharge and noise Limited suppliers, long lead times for spares or replacements | | Anti-cavitation ball valve/s with flow restrictor valve in series | Proven for high dPDirect-buriedLow risk of cavitation and vibrationLower cost | Valve type not known to water authority Limited use in local municipal water systems Limited suppliers, long lead times for spares or replacements Risk of damage from solids | #### Raw Water River Discharge – Key Lessons - Energy dissipation can be very noisy - Valve selection needs to be fit for purpose - Supplier engineering reps are your friend - Need to know valve position, particularly with valves in series - Client needs to be comfortable with the valve type ## Falling Sewer Main - Urgent replacement of failing gravity sewer - SPS and 6.5km of DN650 GRP - Raw wastewater - 80mm free passage size - Variable flows up to 650L/s - End control to prevent drain down - Manage cavitation of dissipating 50m head | Option | Benefits | Risks | |---|--|---| | Orifice plates | Cheap and simple Readily available | Low pressure loss capability (multi-stage) No controllability - range of orifices sizes required with associated diversion valves and controls Pressure drop required orifice < 80mm Susceptible to cavitation | | Throttled isolation valves (ball, globe, or plug) | Reasonably cheap and simple Some controllability Can be opened fully to clear blockages Parts and replacements readily available | Low pressure loss capability (multi-stage) Limited controllability – requires multiple trains with associated diversion valves and controls Risk of blockage due to snagging of fibrous and fatty material when valve is throttled Susceptible to cavitation | | Throttled pinch valves | Can be opened fully to clear blockages No sharp edges in the flow and so not likely to snag fibrous material Some controllability Moving valve parts isolated from wastewater | Low pressure loss capability (multi-stage) Limited controllability – requires multiple trains with associated diversion valves and controls Susceptible to cavitation Internal sleeve is a maintainable item | ## Falling Sewer Main - Residual Risks - Limited controllability and need for regular maintenance - Three parallel trains to cater to the range in flow - DN200 pinch valve (open/close) at the head of each train - Provides system redundancy during maintenance and sleeve replacement - Low pressure loss capability and risk of cavitation - 1No. DN200 PN16 pinch valve (open/close) - 3No. DN450 pinch valves (control and progressive energy dissipation - 3No. DN150 local contractions (>80mm) - 10m residual head to inlet works providing back-pressure to control cavitation ## Falling Sewer Main – Key Lessons - Confirm the selected valves have been used before in the same application - If not, seek test/verified data at the size and pressure required - Work with and gain the interest of the manufacturer (don't underestimate the value they add) - Do not be afraid to ask the "stupid" questions - Be prepared to challenge the project fundamentals (e.g gravity sewer) Langford.Sue@beca.com