AD101: Anaerobic Digestion selection Considerations

Nathan Clarke

Beca Ltd

At Sanguan Wongse Industries, Khorat, (Thailand) 1,000 tonnes of carbon equivalent went up in the air, every day !

300000 ton CO2 reduced per year

Net Positive Wastewater Treatment

AD overview

Examples of different types of digesters

What types of wastes can they treat?

When to use a specific type of digester?

Limitations associated with different digesters

How well do they work?

What limitations?

AEROBIC TREATMENT

ANAEROBIC TREATMENT

Biochemical steps

When the only tool you have is a hammer, every problem is a nail.

Abraham Maslow

Unmixed anaerobic lagoons, & Uncovered anaerobic ponds!!

- The reasons I like AD are largely negated with these...
- Fill up with sludge fast
- Poorly controlled / operable
- Poor gas recovery often significant carbon emissions
- Inconsistent performance
- Often significant odour issues

Fixed Film and Moving Bed Anaerobic reactors

- There are a range of these systems internationally, however they have a number of issues.
- Not that any of them
- Sludge blockage, channelling, calcium build up issue.
- Expect performance reduction over time. 5 -10 yrs

CSTR reactor configuration

- HRT = SRT if good mixing
- Required high level of mixing power
- Process capacity reliant on volume
- Long HRT/SRT required for process stability
- Flexible to accommodate broad range of wastes
- No solids separation =High effluent TSS and COD

Municipal Sludge digesters

CSTRs

- Food wastes
- Rendering wastes
- Paunch Contents

Anaerobic Contact Systems

Recycled Solids

Most Versatile - lot of waste types, and waste characteristics, can accept difficult wastes.

High mixing energy required, lower volume required.

Robust - With correct design can accommodate many different waste types

Improved effluent quality - includes separation systems

Relatively expensive to build and operate.

Anaerobic Contact separation technologies

Anaerobic Contact

Reactors with Upflow principle

- Introduce the feed at the bottom
- Make the feed flow up through the sludge blanket
- Use the gas production to provide part of the mixing energy.
- Reduced parasitic energy consumption.
- Allows much larger reactors at lower cost
- Lowers sort circuiting risk,
- Can have different conditions at different point in the reactor
- Can periodically feed zones in the reactor.

CIGAR process schematic

In ground engineered reactors

- Very robust large sludge inventory, increased resilience over time, great buffering.
- Versatile large range of wastes can be treated
- Low rate but very large capacity systems possible for low cost, due to low cost "tank" construction
- Economically often significantly better than other types of system
- Medium Effluent quality
- Be careful for High Calcium wastes, struvite producing wastes, and wastes with heavy or long stringy particles

Dairy drinks wastewater treatment

Dairy BVF Digester - Victoria

Construction of the inground Anaerobic Treatment System

Construction of the reactor

Construction of the Anaerobic Treatment System

Top view of the low-rate anaerobic treatment system

Generic AN-MBR schematic

Anaerobic Process Comparison

Organic matters

Conventional Anaerobic System

Anaerobic MBR System

AnMBR Technology Exceptional Effluent Quality

Pop tart plant - Kentucky AnMBR / MBR Bio-Reactor

Pop Tart factory wastewater AnMBR Kentucky, USA.

Typical application

	Application	Advantages	Limitation	Loading Rate	HRT (days)
Inground	Wastewater Treatment	Low mixing energy, high capacity	Footprint	0.3-3.0	7-14
CIGAR	Biogas Production	Low mixing energy, high capacity	Footprint	<3.0	14-42
CSTR	Solids Digestion	High Solids	Effluent Quality	1- 7	20-30
Contact	High rate complex wastes	Medium to high strength liquid wastes	Broad application	3 - 8	5 -15
An-MBR	High quality effluent	Effluent Quality	Operating Cost	5-10	0.1-5
ECSB	Very High rate, non complex wastewater	Smaller Footprint	To be discussed	10-35	0.125-1.5

Granular Sludge Systems

High rate systems

Technology comparison

Internal Circulation

	UASB	EGSB	IC	ECSB
Upflow Velocity	1-2m/hr	6-7m/hr	Up to 24m/hr in first compartment <1m/hr in second compartment	<5m/hr in first two compartments <1m/hr in third compartment
Sludge Bed	Blanket	Fluidised	Fluidised	Fluidised
Recycle	No	Pumped	Gas Lift	Pumped
Settler	Maybe Retrofit	One 2 phase	Two 3 phase	Two 3 phase
Settler Coverage	-	60%	100%	100%
Headspace	Pressurised	Pressurised	Open to Atmosphere	Pressurised

	Minimum	Maximum	
Biodegradable COD Concentration	1,500mg/L Preferably >2,000mg/L	~30,000mg/L	
TSS			
Temperature			
рН			
Pre-acidification			

	Minimum	Maximum
Biodegradable COD Concentration	1,500mg/L Preferably >2,000mg/L	~30,000mg/L
TSS	Active bacterial granule	Organic TSS <20-25% of sCOD
Temperature	1 g VSS 1 g VSS	
рН		
Pre-acidification	ACT= 1000 mg COD/g VSS.d ACT= 273 mg COD/g VSS.d	

	Minimum	Maximum
Biodegradable COD Concentration	1,500mg/L Preferably >2,000mg/L	~30,000mg/L
TSS		Organic TSS <20-25% of sCOD
Temperature	25°C	40°C
рН		De Man (1990) Van den Berg(1976) Kennedy et al(1981) Stander(1967) Van den Berg (1977) Lettinga(1978)
Pre-acidification		130- 100- (-) 80- (-) 60-
		Ter 50 40 30 20 10 5 Arrhenius coeff. = 1.11/°C

Figure 2.5. Influence o temperature on the rate of anaerobic digestion in the mesophilic range. After Henzen and Harremoes (1983)

TEMPERATURE (%)

	Minimum	M	axim	um				
Biodegradable COD Concentration	1,500mg/L Preferably >2,000mg/L	~	30,00)0mg	/L			
TSS		Or	gani	c TSS	<20-	25%	of sC	OD
Temperature	25°C	40)°C					
рН	6.6	7.8	3					
Pre-acidification	Hydrolysis	;			5			
	Acidogene Acetogene	esis esis	-					
	Methanoge	enesis etate						
	hyd	drogen	L	I				
			4	5	6	7	8	9

	Minimum	Maximum
Biodegradable COD Concentration	1,500mg/L Preferably >2,000mg/L	~30,000mg/L
TSS		Organic TSS <20-25% of sCOD
Temperature	25°C	40°C
рН	6.6	7.8
Pre-Acidification	<25%	>35%
	2 1 1 - 2 - 2	Part 1 Parts and 1 Parts

		Minimum	Maximum	
COD:SO4 Ratio		10		
Salt	Na+		<10-12g/L	
	Ca ²⁺		<500mg/L	
FOG		Salt	50% Inhibiting Concentration	
Methanol		-	mg /L	
Phenol				
Other		Mg ²⁺	1930	
		Ca ²⁺	4700	
		Κ+	6100	
		Na ⁺	7600	

Other Issues with High SO₄ Levels

- Odour
- Corrosion
- Poor quality of the biogas (reduced CH₄ yield; H₂S removal needed)
- Reduced COD removal efficiency due to H₂S in the effluent
- Reduced bio-availability of micronutrients by sulphide
- Precipitation

	Minimum	Maximum
COD:SO4 Ratio	10	
Salt Na ⁺		<10-12g/L
Ca ²⁺		<500mg/L
FOG		100mg/L
Methanol		500mg/L
Phenol		grams/L
Other		

AD treatment performance

Salad Dressing plant Operating Results

Parameter	Raw Wastewater	AnMBR Effluent
Avg. COD (mg/l)	33,600	190 (99.4%)
Avg. BOD (mg/l)	18,000	20 (99.9%)
Avg. TSS (mg/l)	10,900	< 1 (100%)
Avg. FOG (mg/l)	850	
Temperature (°F)	77	95

Further comments

- Wastewater characteristics directly impact potentials of anaerobic treatment for industrial wastewater
- Most important characteristics are
 - Presence of suspended solids, Fat, Nitrate, potential Precipitation
 - Poor buffer capacity
 - Strength and composition of biodegradable COD
 - Presence of alternate electron acceptors (i.e. SO₄)
 - Toxic components
 - Nutrients
 - Temperature
- Wastewater characteristics need to be included in reactor design, only if appropriately addressed, will successful treatment be assured
- VERY IMPORTANT TO SELECT AN APPROPRIATE AD CONFIGURATION
- Seek independent advice.

Technology isn't the reason why not

Conclusion

- I genuinely think that we can save and generate energy from organic wastes significantly more than we currently do.
- We can recover nutrients and recycle them significantly reducing fertiliser import,
- Be very careful if selecting a high rate AD system, there work well in a narrow range of situations.
- Both Anaerobic Contact, and engineered inground system are flexble and robust.
- A positive is that there are a number of projects developing around the country where AD systems are being installed.

Questions