

Te Maunga WWTP Sludge Dewatering – Pilot Trials to Full Scale

GARETH HALL & JESSICA DALY (BECA)

WALLY POTTS (TAURANGA CITY COUNCIL)

TCC Wastewater Network

Te Maunga WWTP

Sludge Thickening Options

Centrifuge

Gravity Tank

Drum/Screw thickener

Gravity Belt

Sludge Dewatering Options

- Centrifuge
- Vacuum Drum Filter
- Plate Filter Press
- Piston press
- Rotary Press
- Belt Filter Press
- Screw Press

Screw Press Assessment

Advantages	Disadvantages
Low operating speeds and noise	Capture rate can be poor
Low power consumption	Consider size of machines vs throughput (bigger than centrifuges, smaller than belt presses)
Reduced maintenance requirements	
Simple to Operate	
Fully enclosed – good for odour containment	
Pilot Plant Available	

Screw Press Operating Principles

Pilot Plant Trials Set Up

- Sludge Feeds (dry solids)
 - .25 .3 % from bioreactor
 - 1 2.5% gravity thickened
 - 3 7% GBT thickened

Pilot Plant Trials Results

Chemical Conditioning

Process Design Considerations

- Sludge age and VSS:TSS Ratio
- Change of thickening to gravity tank (picket fence) thickeners
- Cutting type macerators ahead of feed pumps
- Coagulant dosing
- Static and dynamic mixers
- Micro-screens on filtrate lines

System Components

Plant Construction

Dewatered Sludge Cake Load Out

Full Scale Plant Results

Final Performance Testing

 Screw press performance testing guarantees were based on a maximum sludge feed VSS:TSS ratio of 82%

 Final testing not yet undertaken due to current plant overloading with drop in sludge age to 8 days

Confidence pilot plant results will be replicated

Key Lessons Learnt

 Influence of sludge feed rate, % solids and age/VSS:TSS ratio on screw press performance

 Importance of sludge conditioning - maceration, polymer selection and good mixing

 The Criticality of pilot plant dewatering trials, on WAS only in particular

